
~.DataGeneral

Microprograllllllers' Reference,
ECLIPSE MVI 10000™ COlllputer

Microprogrammers' Reference,
ECLIPSE MV/lOOOOTM Computer

014-701003

Ordering No. 014-701003
© Data General Corporation, 1983
All Rights Reserved
Printed in the United States of America
Revision 00, May 1983

NOTICE
Data General Corporation (DGC) has prepared this document for use by DGC personnel, customers, and prospective
customers. The information contained herein shall not be reproduced in whole or in part without DGC's prior written
approval.

DGC reserves the right to make changes in specifications and other information contained in this document without
prior notice, and the reader should in all cases consult DGC to determine whether any such changes have been
made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE WRITTEN CONTRACTS
BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR OTHER AFFIRMATION OF FACT
CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT LIMITED TO STATEMENTS REGARDING
CAPACITY, RESPONSE-TIME PERFORMANCE, SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS
DESCRIBED HEREIN SHALL BE DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE
RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN
IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY OF SUCH
DAMAGES.

CEO, DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS, microN OVA, NOVA, PROXI, SUPERNOVA,
ECLIPSE MV/4000, ECLIPSE MV/6000, ECLIPSE MV/8000, PRESENT, TRENDVIEW, and MANAP are
U.S. registered trademarks of Data General Corporation.

AZ-TEXT, BusiPEN, BusiGEN, BusiTEXT, ECLIPSE MV/10000, DEFINE, DG/L, GENAP, GDC/lOOO,
GW/4000, microECLIPSE, REV-UP, SLATE, SWAT, and XODIAC are U.S. trademarks of Data General
Corporation.

Microprogrammers' Reference,
ECLIPSE MVIlOOOO Computer

014-701003

Original Release -May 1983

Contents

Preface p-l

Chapter 1 Introduction

Terminology .
Microprogramming
MV110000 Subsystems
MV110000 Buses

Chapter 2 MV/10000 Architecture and Operation

Clocks and Timing
The Microsequencer

Writable Control Store
Microinstruction Register
Microprogram Counters
Microstack and Microstack Input Multiplexer
Top of Stack Register .
RAM Address Multiplexer .
DSP Register, Crossbar Net, Dispatch Multiplexer
AA Bus
Flags
SCP Control
Tests

The Integer ALU
Integer Register File
Registers on the ID Bus
Scratch Pad
Transfer Register
Hex Shifter
ALU .
Carry-In Logic ..
Commercial Test and Edit PROMs
Bit Shifter .
Processor Status Register
CPD Bus Register-PDR

The Floating-Point Unit
FPU Buses ...
Mantissa Logic

General Logic
Floating-Point Register File
Floating-Point Status Register

1-1

1-1
1-2
1-2
1-4

2-1

2-1
2-2
2-2
2-2
2-3

· 2-3
· 2-4
· 2-5
· 2-5

2-6
2-6
2-7
2-7
2-8

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-18
2-19
2-19
2-21
2-21
2-22
2-22
2-22

ii

Floating-Point STATE Register
Hex Shifter
MAG Register
Mantissa ALU
Working Register

Multiply Hardware
X and Y Registers
YSEL Counter
Multiply ALU ...

Divide Hardware
Divide Guard Digit Register
Divide Partial Remainder Register

Sign and Exponent Logic . . .
Exponent Working Register
Exponent ALU ...
SA and SB Registers
Sign Logic

The Address Generator
Buses .
Register File
Register File Addressing
AGB Bus Sources .
RFIN Multiplexer .
Address Generator ALU

The Address Translation Unit
Address Translation Cache
Referenced/Modified RAM
Validity RAM .
Logical Address Translation
Page Table Addressing Logic
Ring Protection .
Indirection Protection
Read/Write/Execute Protection
ATU State .
ATU Diagnostic Register
ATU Dispatch
The CPD Bus and Transfer Register

Instruction Processor
Interrupts . .
I/O Protocols

Chapter 3 Micro-order Format and Instruction Set

NAC -Next Address Control
NAC:COP -Conditional OPcode
NAC:TSEL-Test Selection

Microsequencer Tests
Address Translation Unit Tests
Integer ALU Tests .
Floating-Point Tests .

NAC:UCOP -Unconditional OPcode
NAC:DSR -Dispatch Address Source

Address Generator Micro-orders

2-24
2-24
2-24
2-26
2-26
2-26
2-27
2-28
2-28
2-28
2-29
2-29
2-30
2-30
2-31
2-31
2-31
2-31
2-32
2-33
2-34
2-35
2-36
2-36
2-36
2-37
2-38
2-38
2-38
2-38
2-39
2-39
2-40
2-40
2-41
2-42
2-43
2-43
2-45
2-46

. 3-1

. 3-2
3-4
3-6
3-7
3-9

3-12
3-18
3-20
3-23
3-24

AA and AB -The Register File Address Fields
AGB -The Address Generator Bus Field
AOP -Address Generator ALU Operation Field
AL -Address Generator Register Loading

Memory Control Micro-orders
MEMS -Memory Start '"
MEMC -Memory Complete

Bus Control Micro-orders . .
CPMS -CPM Bus Sources ...
CPDS -CPD Bus Sources

RAND -Random Micro-orders
RAND:GEN -General Random Micro-orders

RAND:GEN:REGO-GenerallACSRIACDR Micro-orders
RAND:GEN:REG1-Register Load Operations
RAND:GEN:SPAD -Scratch Pad Input Control

RAND:ATU -ATU Random Micro-orders
RAND:ATU:ATUO-ATU Operations
RAND:ATU:ATU1-Additional ATU Operations
RAND:ATU:SPAD-Scratch Pad Input Control

RAND:FIX -Fixed-point Random Micro-orders .
RAND:FIX:COVS -Carry, Overflow and Status
RAND:FIX:LOAD -Load Registers .
RAND:FIX:SPAD -Scratch Pad Input Control

RAND:FLT -Floating-Point Random Micro-orders
RAND:FLT:SGN -Floating-Point Sign .,.
RAND:FLT:EXP -Floating-Point Exponent
RAND:FLT:SCNT -Shift Count Control .

Integer ALU Micro-orders .
IA and IB -Integer Register File Addressing
ID -ID Bus Source Control .
RS -ALU Input Multiplexer Control ..
lOP -ALU Control and Shift Magnitude
IY -IY Bus Source .
IL-Integer Register File Input

Floating-Point ALU Micro-orders
FR-FR Bus Source
FS -FS Bus Source
FOP -Mantissa Operations ...
FWR -Working Register Input
FCW -Floating-Point Register Write Address
FL -Register File Load Specifier .
FRG -Floating-Point Register Load Control
FX -Excess-64 Control .

Chapter 4 Microprogramming Examples

Memory Accesses ..,
IPOP -Crossing Macroinstruction Boundaries
Indirection Resolution
Dispatching .

iii

3-24
3-28
3-29
3-29
3-30
3-31
3-32
3-34
3-34
3-35
3-39
3-40
3-40
3-48
3-49
3-50
3-50
3-58
3-59
3-60
3-60
3-63
3-63
3-64
3-65
3-66
3-69
3-71
3-71
3-75
3-77
3-77
3-79
3-84
3-86
3-86
3-87
3-88
3-89
3-90
3-94
3-95
3-99

· 4-1

· 4-2
· 4-4
· 4-5
· 4-6

iv

Chapter 5 MV/10000 Microcode Macroassembler

The Macroassembler
CPM Bus .
CPO Bus .
Memory Starts and Address Generator Operations
Memory Completion
ALU Operation Constructs

IY Bus
ALU Test ..
Loading SPAR
Edit PROM
ID Bus .
IR .

FPU Operations
FO Bus
FA and FB Buses
WR ==

Sign and Exponent Control
Shift Count
Multiply Control
FPU State .. ,
Divide Control

GEN Randoms
ACSR (SRC Register Pointer) Randoms
ACOR (DES Register Pointer) Randoms
Flag Manipulation
Skips .

Miscellaneous Randoms (NPDRand XTND)
ATU Randoms
FIX Randoms .

"Next Address Sequence .
Conditional Address Generation
Unconditional Address Generation
Pseudo-unconditional Address Generation

Test Definitions .
Examples .

Unassembled Example
Assembled Examples .

· 5-1

· 5-1
· 5-2
· 5-3
· 5-4
· 5-6
· 5-6
· 5-6
· 5-9
5-10
5-10
5-11
5-11
5-11
5-11
5-12
5-13
5-13
5-14
5-14
5-15
5-15
5-15
5-15
5-16
5-16
5-17
5-17
5-18
5-18
5-19
5-19
5-19
5-20
5-20
5-24
5-24
5-26

Appendix A Page Faults A-I

Appendix B CPD Bus Legal Path Analysis B-1

Appendix C CPM Bus Legal Path Analysis C-l

Appendix D ALU Source and Destination Paths D-l

Appendix E Page Zero Locations E-l

v

Appendix F Fault Codes F-l

Appendix G Exceptions G-l

Appendix H Scratch Pad Addresses H-l

Figures
1-1 MVIlOOOO Subsystems ..

2-1 MV110000 System Clocks
2-2 Microinstruction Register .
2-3 Program Counters and Microstack
2-4 The Crossbar Network and RA Multiplexer
2-5 Integer ALU .
2-6 Integer ALU Register File
2-7 Registers on the ID Bus
2-8 Scratch Pad .
2-9 The Transfer Register
2-10 The Integer ALU and Associated Logic
2-11 CARRY Bit and Carry-In Logic
2-12 The Floating-Point Unit
2-13 The MAG Register Sources
2-14 Multiply Data Paths ...
2-15 Divide Data Paths
2-16 Sign and Exponent Logic
2-17 The Address Generator
2-18 The Address Translation Unit
2-19 Page Table Addressing Logic
2-20 The Instruction Processor
2-21 I/O Command Formats ..

3-1 The MV110000 Microword
3-2 The NAC Field
3-3 RAND Mode Formats

A-I Context Blocks

· 1-3

· 2-1
· 2-2
· 2-4
· 2-6
· 2-9
2-11
2-12
2-13
2-14
2-15
2-16
2-20
2-25
2-27
2-29
2-30
2-32
2-37
2-39
2-44
2-46

· 3-1
· 3-2
3-40

A-3

vi

Tables
2-1 RAND Mode and CIB .
2-2 Processor Status Register .
2-3 Address Translation Unit State
2-4 ATU State Fault Codes

3-1 MVIlOOOO Microaddresses
3-2 Conditional Microorders in the OP Field
3-3 COMI Tests .
3-4 COM2 Tests .
3-5 lOT Tests .
3-6 Unconditional OP Microorders
3-7 Dispatch Address Source ...
3-8 RM Field Micro-orders
3-9 CNST Microorders for RAND MFSO and MFS1
3-10 CNST Microorders for RAND AF46 and AF57
3-11 ATU Restored State
3-12 CP Mode Code .

4-1 Microword Header Abbreviations

2-17
2-18
2-40
2-4]

· 3-3
· 3-4
3-14
3-15
3-16
3-21
3-23
3-39
3-44
3-46
3-51
3-52

· 4-1

Preface

The Microprogrammers' Reference, ECLIPSE MV/l 0000 Computer describes the microcode
for the ECLIPSE MV110000™ computer.

Who Should Read This Manual?

This manual is intended as a reference for microprogrammers. It assumes some prior
knowledge of the MV11 0000 hardware and instruction set.

Manual Organization

The two major sections of this manual (Chapters 2 and 3) describe the MV110000
hardware and MV110000 micro-orders. The hardware descriptions are oriented towards
microcode control. The micro-order descriptions are arranged by field. Chapter 4 presents
examples of MV110000 microprogram segments~ these illustrate typical microcode operations.
Chapter 5 describes the MV110000 microcode macrolanguage and provides examples of
microassembler input and output. Appendixes provide supplemental information and
microprogramming aids.

Prerequisite Manuals

• ECLIPSE MV/10000 System Functional Characteristics (014-000724)

• Principles of Operation, 32-bit ECLIPSE Systems, Programmers Reference Series (014-000704)

Other Related Manuals

• /l-Link Microcode Linker Manual (093-400029)

• /l-ASM Microassembler Manual (093-400030)

• SMI Microcode Simulator Manual (093-400031)

Contacting Data General

• To order any Data General manual, notify your sales representative and supply the manual
title and order number.

• If you have software problems, please notify your local Data General systems engineer.

• If you have hardware problems, please notify the Field Engineering Dispatch Center.

End of Preface

Chapter 1
Introduction

The ECLIPSE MV/10000TM computer implements the ECLIPSE MV instruction set. The
MV/10000 CPU is microprogrammable. This manual describes the CPU microcode. In this
chapter, we begin with a brief discussion of terminology and microprogramming. Then we
describe each microcode-controlled subsystem in the MV/10000 CPU. We conclude by
describing the CPU buses.

Terminology

Microprogramming terminology is similar to programming terminology. The following special
terms are peculiar to microprogamming.

• Microcode -Code written with microinstructions.

• Control store -The local memory, either RAM or ROM, that holds the microcode for a
computer.

• Microinstruction -The contents of a location in control store. An MV/1 0000
microinstruction is 104 bits wide.

• Microassembler -A program that lets you use symbolic names when writing microcode.

• Microfield -A predefined segment of a microinstruction, usually associated with a
particular control function.

• Micro-order -A possible value for a microfield. The number of micro-orders available for
a microfield depends on the width of the field. In this text, we will usually refer to
micro-orders by their microassembly names. For example, "FOP:SUB" means the SUB
(subtract) micro-order in the FOP (floating-point operation) microfield.

• Microroutine -The set of microinstructions needed to carry out a complete operation,
such as adding two numbers.

• Macroinstruction -A machine-language instruction. A macroinstruction is implemented by
one or more microinstructions.

Terminology

1-2

Microprogramming

The MV/l0000 machine-language instruction set is interpreted by microcode. In some
computers, the machine language is "hard-wired." The signals that control various parts of the
computer are generated by logic in the Central Processing Unit (CPU). This logic produces a
different set of signals for each instruction the computer can execute. In the MV/l0000
processor, microcode generates these same signals. Microcode has the advantage that, unlike
hard-wired logic, it can be changed easily to accomodate changes to the instruction set.

Like the logic that preceded it, microcode controls the machine at a primitive level and
uses the hardware to interpret machine-language instructions. Each macroinstruction is
implemented by a microroutine residing in control store. This microroutine interprets an
instruction much as a machine-language program might interpret a higher-level language.

MV/lOOOO microcode uses Writable Control Store (WCS) , which means that microcode is
stored in RAM and must be reloaded each time the machine is booted. (Some computers store
their microcode in ROM, so that it is available even when the machine first starts up.)
MV/lOOOO microcode is loaded by the System Control Processor (SCP).

MV/10000 Subsystems

The MV/lOOOO CPU has six separate subsystems: the Instruction Processor, the
Microsequencer, the Address Generator, the Address Translation Unit, the Integer ALU, and
the Floating-Point Unit. All of these are under microcode control. These subsystems are
connected to the System Control Processor (which acts as a system console), the I/O Controller
(which connects the MV/l0000 processor to peripheral devices), and main memory. Figure 1-1
shows the MV/lOOOO subsystems.

MV/10000 Subsystems

1-3

MV/10000 Subsystems

Main
Memory

DG-09751

Figure 1-1. MV/10000 Subsystems

The rest of this chapter briefly describes each microcode-controlled subsystem. Chapter 2
describes them in greater detail.

The Instruction Processor

The Instruction Processor (IP) decodes macroinstructions. Decoding an instruction means
dividing it into component fields and producing a starting WCS address. The starting address
points to the beginning of the microroutine that will execute (interpret) the instruction. The IP
is pipelined: while one instruction is executing, several other instructions may be in various
stages of decoding.

The IP contains the program counter, the instruction register, and the Instruction Cache
(Icache). The Icache speeds up the fetching of instructions.

The Microsequencer

The microsequencer generates addresses into WCS. It determines which microinstruction
will execute next. When microcode is being loaded, the microsequencer takes addresses from
the SCP, along with the microroutines to be loaded.

The microsequencer contains the microprogram counter, the microstack, and the
microaddress-generating logic. It can construct addresses from several different sources,
depending on the needs of the microroutine. At the beginning of a microroutine that interprets
a macroinstruction, the IP provides the microsequencer with a starting WCS address.

The Address Generator

The Address Generator (AG) constructs logical addresses for the MV110000 processor.
These addresses are 32-bit references to the 4-gigabyte, 8-segment ECLIPSE MV logical address

MV/10000 Subsystems

1-4

space. The AG provides addresses for the Address Translation Unit, which translates them into
physical addresses for main memory.

The AG contains a register file, an ALU, and several individual registers. Decode logic in
the AG, under microcode control, determines how an address is constructed.

The Address Translation Unit

The Address Translation Unit (ATU) changes logical addresses to physical addresses. Main
memory uses a paging procedure that brings in logical pages from secondary memory only when
they are needed. The ATU determines the physical location in main memory of the logical page
addressed by the AG.

The ATU has an address translation cache, in which it stores recently used
logical-to-physical translations. It also has special logic that lets it access page tables (which
locate pages in main memory) very rapidly. In addition, the ATU has protection logic that
checks memory references for validity.

The Integer ALU

The Integer ALU (IALU) adds and subtracts fixed-point numbers. It also shifts numbers,
translates and validates commercial data, and performs logical operations.

The IALU contains a register file, a shifter, a scratchpad memory, and an ALU.

The Floating-Point Unit

The Floating-Point Unit (FPU) adds and subtracts floating-point numbers and multiplies
and divides both floating- and fixed-point numbers. It can manipulate floating-point numbers up
to 64 bits wide.

The FPU has separate exponent and mantissa sections. These share a 64-bit-wide register
file~ however, each section has its own ALU and logic. In addition, the FPU has sign logic to
determine the sign for each result.

MV/10000 Buses

The following buses carry data within the MV110000 CPU. They connect the various subsystems
to other subsystems and to external devices:

• The CPM Bus is a 32-bit bus that carries data between the CPU and main memory. The
AG, the IALU, and the FPU can all source and sink this bus.

• The CPD Bus is a 32-bit bus that carries data among the subsystems of the CPU and
between the CPU and the I/O Controller. The CPD Bus connects to all the CPU
subsystems except the FPU.

• The LA Bus carries 32-bit logical addresses between the AG and the ATU.

• The CPA Bus carries physical addresses from the ATU to main memory.

End of Chapter

MV/10000 Buses

Chapter 2
MV/1 0000 Architecture and Operation

This chapter describes elements of the MV110000 processor, and explains how they are
interconnected. Most of the descriptions are oriented towards a microprogrammer's point of
view, with frequent references to specific micro-orders. Chapter 3 contains full descriptions of
the micro-orders.

In this chapter, we examine the clocks and the microsequencer for the MV110000
processor~ then the Arithmetic Logic Units~ and finally the addressing logic and instruction
processor. We also look briefly at the protocols for I/O and memory references.

Clocks and Timing

The basic clock for the MV110000 processor is SYS clock, which has a cycle of 70
nanoseconds. From SYS clock each board derives its own clock, typically called CP clock,
which has a cycle of 140 nanoseconds. CP clock is the instruction-cycle clock for
microinstructions. Thus, the basic system timing cycle is 140 nanoseconds.

The basic timing cycle can be extended by coding RAND: <GEN:REGO or
ATU:ATUO>:XTND. This code extends the CP clock cycle by two SYS clock periods, so that
CP clock takes 270 nanoseconds. Figure 1 shows the basic MV110000 clocks.

SYS Clock

CP Clock

11....---_
70 ns

I~-
II

L
Basic Clock Cycle

DG-15374

XTNDed Clock Cycle

Figure 2-1. MV/10000 System Clocks

Clocks and Timing

2-2

The Microsequencer

The microsequencer determines the next microinstruction to be executed. The
microsequencer contains part of the Writable Control Store, the microinstruction register, and
the next address logic.

Writable Control Store

The MY110000 Writable Control Store consists of 8K microwords divided into 1K pages. (The
WCS address is 14 bits~ however, only 13 are used at this time.) Each microword consists of
104 bits. WCS is divided so that 48 bits of each microword are on the microsequencer card
and 56 bits are on the Address Generator (AG) card. The System Control Processor (SCP)
loads microroutines into WCS when the system is booted.

Microinstruction Register

The microinstruction register is 104 bits wide, divided into 26 fields, 2 parity bits, and 4
unused bits. Figure 2-2 shows the microinstruction register. The fields in the microinstruction
register are decoded to provide the control signals that operate the MY110000 computer.

NAC AA AB AGB AOP AL MEMS MEMC CPMS CPDS
20 4 4 2 2 2 3 2 3 4

RAND IA IB ID RS lOP IY IL
11 4 4 3 2 3 4 2

~~~~C_N_S_T_8~~~~I~ PA~TYI
I
I
I
I

FR FS FOP FW
2 2 2 2

DG-15375

Figure 2-2. Microinstruction Register

Microinstruction Register



2-3

Microprogram Counters

The MV110000 processor has a microprogram counter (uPC) and an incremented
microprogram counter (uPC + 1). Both of these are available to microroutines. uPC + 1
increments modulo 1024~ that is, if uPC points to the upper boundary of a 1K page, uPC+ 1
addresses word zero in that page.

Both PCs are loaded whenever an address is sent to WCS. uPC+ 1 is automatically
incremented when it is loaded. Figure 2-3 shows the two microprogram counters.

Microstack and Microstack Input Multiplexer

The microstack is a hardware stack that microroutines can use for calls and traps. It contains
fifteen 16-bit words. The current value at the top of the stack is kept in the top of stack
(TOS) register.

You can push either a 14-bit address or a 16-bit value fiom the CPD Bus onto the
microstack. Inputs to the stack come through a multiplexer controlled by the NAC:COP or
NAC:UCOP fields in the microword. The stack logic, controlled by these fields, determines
whether the stack is pushed or popped. In addition, the stack control logic signals empty and
IPOP. (IPOP occurs when a microinstruction pops an empty microstack~ this operation
dispatches to the microroutine for the next macroinstruction.) Figure 2-3 shows the
microstack.

The NAC:COP and NAC:UCOP fields control the stack input multiplexer. This
multiplexer can select one of the following to be pushed on the stack:

• the uPC+1

• the AA Bus (described below)

• the CPD Bus, bits 0-15 (inverted)

uPC+ 1 and AA are 14-bit addresses that the microcode can use to address WCS.

The most significant 16 bits of the CPD Bus can be pushed onto the stack also. This
operation is used primarily to restore state.

In addition to uPC+ 1, AA, and CPD, the hardware can also push the current uPC and
the current test result. It does this during a hardware TRAP~ the uPC cannot be pushed
under microcode control. To restore from a TRAP, the micro-order NAC:COP:CRST must be
performed. This micro-order pops the test result from the stack and makes it the current test
result. This result appears as TOS14 in the TOS register.

Microstack and Microstack Input Multiplexer



2-4

o
ddress

plexer

Stack Control

I /-LPC I /-LPC + 1 I Logic

.---
Stack Stack
Input

~ TOS I--
AA[O-13] Mux 15x16

'---

L..-....,. r----'-"Base
~

Addr T

;---+
Mux RAM A

Multi

I....-- CPD15-

CPD[O-13]-
NAC[6-9]

NAC[10-19]+

Test Logic
and CPD 14-

DG-15376

Figure 2-3. Program Counters and Microstack

Top of Stack Register

The top of stack (TOS) register holds the current value at the top of the microstack. (Figure
2-3 and Figure 2-4 show the TOS register.) This value can be sent as an address to WCS or
it can be gated onto the CPD Bus. When the microstack is empty, the TOS register is
disabled by the stack control logic. When the logic disables the TOS register, it enables a
multiplexer (NTOS select) that supplies a new address. This multiplexer selects between the
starting microaddress (STUAD), derived from the next macroinstruction, and CRA, an
address the System Control Processor supplies. (Figure 2-4 shows the multiplexer,) The CRA
is used for initial microcode loading and is not enabled in a running system.

Top of Stack Register



2-5

RAM Address Multiplexer

The RAM Address (RA) multiplexer selects the control store address. (Figure 2-4 shows the
RA multiplexer.) The multiplexer is controlled by the NAC:COP and NAC:UCOP fields, and
selects among four possible addresses for the WCS:

• The TOS or STUAD address (described above)

• The address from the dispatch register and crossbar network

• The AA Bus

• The incremented microprogram counter (uPC + 1)

During a trap, this multiplexer forces an address to the appropriate trap routine.

DSP Register, Crossbar N"et, Dispatch Multiplexer

The dispatch (DSP) register is used to form an address for WCS. The 8-bit register is loaded
from CPD[24-31]-. The output of the dispatch register goes to a cross-bar network that
provides three address formats. These are constructed from a combination of the AA Bus,
two bits (ATD[O-l]) from the Address Translation Unit (ATU) , and the dispatch
register. The three formats are:

• AA[O-91,DSP[4-7]

• AA[O-51,DSP[O-7]

• AA[O-91,O,ATD[O-11,O

The dispatch multiplexer chooses among these addresses. The NAC:DSR field selects
which of these addresses will go to the RA multiplexer. The DSR field is part of all
microinstructions that specify a dispatch address.

DSP Register, Crossbar Net, Dispatch Multiplexer



2-6

From
CPD[O-15]-

Stack TOS

TOS 14 (test result after CRST)
Stack
Empty
Signal j.tPC+1

AA[O-13] WCS

STUAD TOS[O-13] Input ToWCS
NTOS Mux

CRA sel

AA[0-9],DSP[4-7]

DSP
Reg ~J---I~

Cross- AA[0-5],DSP[O-7] DSP
Bar 1-----------.-1 Mux
Net

AA[0-9],ATD[O-1 ],0

AA[0-10]

ATD[0-1]

CPD[24-31]

OG-15377

Figure 2-4. The Crossbar Network and RA Multiplexer

AA Bus

The AA Bus is the main address bus in the microsequencer. It is fourteen bits wide, is
sourced by the NAC:ADDRESS field of the microword and by uPC, and sources both the
RA multiplexer and the crossbar network. The least significant ten bits of the AA Bus come
from the NAC:ADDRESS field of the microword. The four most significant bits come from
either NAC:ADDRESS or from the page bits [0-3] of the uPC, depending on the type of
operation coded: unconditional or conditional, respectively.

Flags

The microsequencer card has eight flags that microcode can test. At IPOP time, the IP decode
RAM sets flags 0-3, which refer specifically to the current macroinstruction.

Flags



Flag °

Flag 1

Flag 2

- Flag 3

2-7

Flag °indicates the width of the data in the ALU and controls the word/sign
extension on the IY Bus (see the ALU section). For FLAGO=O, the width is
16 bits~ for FLAGO= 1, the width is 32 bits.

Flag 1 indicates the width of data on the Logical Address (LA) Bus. For
narrow width addressing, the 15 least-significant bits and LAO will be driven by
the Address Generator. The ATU will supply the current ring bits, setting
LA[l-3] equal to CRE[l-3]~ bits LA[4-16] will be zero. For wide addressing,
the Address Generator will drive all the bits on the LA Bus, unless the
RAND:ATU:ATUl:AC micro-order is coded in the same cycle. For
FLAG1= 0, addressing is narrow~ for FLAG1= 1, addressing is wide.

Flag 2 indicates operand precision (single or double) for operations of the
floating-point unit. For FLAG2=0, operands are single precision~ for
FLAG2= 1, operands are double precision.

Flag 3 indicates the ALU test width. Test widths from the ALU can be either
32 bits or 16 bits. For FLAG3=0, width is 16 bits~ for FLAG3=1, width is 32
bits.

The remaining 4 flags are set to zero at IPOP time~ these flags are defined only by their use
in the microprogram. All eight flags can be manipulated by the microprogram. The CPDS:USS
micro-order gates the flags onto CPD[l6-23]- as part of the microsequencer state.

SCP Control

The microcode in WCS is loaded from the System Control Processor. When the system is
booted, the SCP scans in microroutines. Only after microcode is loaded is control turned over
to the microsequencer.

Tests

The microsequencer can perform actions conditional on the outcome of various tests. There
are 64 tests that can be specified by the NAC:TSEL field. These tests fall into four categories:

• Microsequencer tests, including microstack empty and flag tests.

• ATU tests

• Integer ALU tests

• Floating-Point tests

In addition, the TSEL polarity bit can invert the test result, thus altering its interpretation.
The test result determines which action is performed by a micro-order in the NAC:COP field.

Tests



2-8

The Integer ALU

The Integer ALU (IALU) performs arithmetic and logic operations on 16-bit and 32-bit
integers. It consists of a register file, an ALU, a hex shifter, a bit shifter, a scratch-pad file,
and miscellaneous additional logic. Figure 2-5 shows the integer ALU.

Narrow and Wide Operations

The Integer ALU can perform either 16-bit or 32-bit arithmetic. Width is determined by
FLAGO (for bus widths) and FLAG3 (for test widths). The Instruction Processor
automatically sets these flags when it is decoding a macroinstruction.

When FLAGO= 1, the IY Bus in the ALU is effectively a 32-bit bus. When FLAGO=O,
the IY Bus is effectively a 16-bit bus. Values that are sourced onto the bus when FLAGO=O
will go into the least-significant 16 bits (IYD6-31]). For FLAGO=O, data from the ALU and
bit shifter will be sign-extended if written to the IALU's or Address Generator's register files,
or to the Scratch Pad (SPAD) ~ other destinations will be one-filled in their most-significant
bits. Data from the hex-shifter always contains zeros in the most-significant bits, regardless of
destination.

When FLAG3=1, Integer ALU tests apply to 32-bit quantities~ when FLAG3=O, the
tests apply to 16-bit quantities. The exact effect of this on any given test is explained in
Chapter 3 under the individual test explanations.

The Integer ALU



2-9

.;t a::
C") 0a.. U
0 «

..-
C")

I
0
Q

I-
Z

..-
__<.2._

C")

6 a::
Q 0
a.. a..
U

("oJ a::
(f)

a.. U
0 «

o«
a..
(f)

a::
(f)
a..

c::
U

C")
I

o
F

....-£
(f)

C")
Io
~
a..
U ..-

C")

6cc

OG-09752

Figure 2-5. Integer ALU

The Integer ALU



2-10

Integer Register File

The Integer ALU general register file consists of sixteen 32-bit registers with two separately
addressable output ports and a single input port. The register file input is through a
multiplexer that selects either the CPM Bus or the IY Bus. The output from the register file
is to the A Bus and the ID Bus. Figure 2-6 shows the register file.

By convention, registers in the file are assigned particular meanings as follows:

Register

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Integer Register File

Meaning

Programmer-visible Accumulator 0
(must contain same value as AG reg. 0 at IPOP)

Programmer-visible Accumulator 1
(must contain same value as AG reg. 1 at IPOP)

Programmer-visible Accumulator 2
(must contain the same value as AG reg. 2 at IPOP)

Programmer-visible Accumulator 3
(must contain the same value as AG reg. 3 at IPOP)

Wide frame poi nter

Wide stack limit

Wide stack base

Constant (-1)

Microprogram general register

Microprogram general register

Microprogram general register

Microprogram general register

Microprogram general register

Microprogram general register

Register addressed by ACSR

Register addressed by ACDR



CPM[0-31] IY[0-31 ]

2-11

Register File
A

Register

16 x 32
Address

B Logic

.....--IA[0-3]

.....-- IB[0-3]

ACOR[0-3]

ACSR[0-3]

DG-15378

A Port

A[0-31 ]

B Port

10[0-31 ]

Figure 2-6. Integer ALU Register File

The IA and IB fields of the microinstruction supply addresses for the A and B output
ports. The following table shows the relationship between values in the IA and IB fields and
the registers addressed:

IA or 18

=<0

=E

=F

Register Addressed

The field directly addresses the register file.

The Accumulator Source Register (ACSR) addresses
the register file.

The Accumulator Destination Register (ACDR)
addresses the register file.

The IB address field supplies addresses for the input port of the integer register file. The
CPM Bus and the IY Bus source the register file through a multiplexer. This multiplexer is
controlled by the IL field of the microinstruction.

Registers on the ID Bus

Figure 2-7 shows the registers that source the ID Bus. Data from these registers can go to
either input of the ALU or to the Processor Status Register. The ACDR and ACSR registers
can both source and sink the bus. The B output port of the Integer ALU Register File (ALU
BREG) is another source, described above. The Scratch Pad (SPAD) can also source the ID
Bus~ it is described in the section "Scratch Pad," below. PDR is a 32-bit register that
transfers data between the CPD and ID Bus. It is described in "CPD Bus Register -PDR,"
below.

Registers on the ID Bus



2-12

Bits

ID[0-31]-

l
To ALU

DG-15379

Q~r;:J~~c;:JQ
[0-31] [0-31] [28-31] [24-27] [0-31] [24-31] [16-23]

t_l
1
-* + + + L

To PSR

Figure 2-7. Registers on the 10 Bus

ACSR and ACDR Registers

The Accumulator Source and Destination Registers (ACSR and ACDR) are 4-bit
registers that address the integer register file. They generally contain the values from the ACS
and ACD fields of a macroinstruction. The registers can be incremented, decremented, or
loaded. The RAND:GEN:REGO field controls these registers.

CON and SPAR registers

The constant (CON) and Scratch Pad Address Register (SPAR) are 8-bit registers that
address locations in the scratch pad (see below). CON contains the value in the CNST field
of the microinstruction. SPAR can be loaded from the IY Bus or from CON. In addition,
SPAR can be loaded with a hardware-generated address that indexes into bit masks kept in
the first thirty-two scratch-pad locations. Besides addressing the scratch pad, both CON and
SPAR can source the ID Bus.

Scratch Pad

The scratch pad (SPAD) consists of 256 thirty-two-bit registers. It stores temporary values
and constants used in various microcode routines. Appendix H lists the scratch pad constants.
Figure 2-8 shows the scratch pad and its addressing logic.

Scratch Pad



CPM[0-31] IY[0-31 ]

2-13

DG-15380

Hardware Generated

IY[24-31]
Address

~

(
~ CON I I SPAR I

1

in

Scratch Pad

256 x 32
SPAM

L addr

out

, ,
ID[0-31 ]

Figure 2-8. Scratch Pad

Data is written into the scratch pad from the IY Bus or the CPM Bus~ the scratch pad
sources data to the ID Bus. The scratch pad can be addressed by the CNST field of the
microinstruction or by the scratch pad address register (SPAR). Micro-orders in the
RAND:GEN:REGO, SPAD, and ID fields control the scratch pad.

Special logic generates the scratch pad address for the WSKBO and WSKBZ instructions.
The address is constructed from the macro instruction register and loaded into SPAR as
follows:

0) 0) 0) IR [1-3] ) IR [10-11]

The table of bit masks for WSKBO and WSKBZ resides in the first thirty-two scratch pad
locations. The constructed address indexes into the scratch pad for the proper mask.

Transfer Register

The transfer register (TREG) moves data from the CPM Bus to the CPD Bus. Figure 2-9
shows the position of the TREG.

Transfer Register



2-14

CPM[O-31]

I TREG I

CPD[O-31]

DG-15381

Figure 2-9. The Transfer Register

TREG is controlled by the LT micro-order, which can be used in the RAND FIX:LOAD,
ATU:ATU1, or GEN:REG1 fields, and the CPDS:TRG micro-order.

Hex Shifter

The hex shifter can shift left, shift right, or rotate 32 bits in 4-bit increments. A shifted
number is zero filled. In addition, the hex shifter can sign-extend words and bytes, and can
zero- extend words. Figure 2-10 shows the hex shifter. The size of the shift is controlled by
the lOP field of the microword, and so, generally, you cannot use the ALU and the shifter
simultaneously.

Hex Shifter



ID[0-31 ]

A[0-31 ]

I
Register File I

A Port B Port

2-15

I Edit I
R-In Mux

R[0-31 ]

S-In Mux

ALU

Carry-In
Logic

DG-09758

Hex Shifter

I

IY[0-31]

F[0-31]

Bit Shifter

ALU

Figure 2-10. The Integer ALU and Associated Logic

The ALU performs the arithmetic and logical functions for the integer ALU section of the
CPU. Figure 2-10 shows the ALU and its relationship to other logic. The inputs to the ALU
are through the R-in and S-in multiplexers, which can take data from the A and ID buses.
They are controlled by the RS field of the microinstruction. The R input can also take data
from the CPD Bus. In addition the ALU has a carry-in bit for arithmetic functions. The
output of the ALU goes through the bit shifter to the IY Bus.

The lOP field controls the Rand S inputs and the polarity of the carry-in input to the
ALU. The ALU can perform the following functions:

• RAND S

• R OR S

• RANDS'

ALU



2-16

• R XOR S

• R' + S + CIB'

• R + S + CIB'

• R' + S + CIB

• R + S + CIB

Note that the lOP field also specifies the hex-shifter count when HLO, HRO, or HRT is
coded in the IY field.

Carry-In Logic

The carry-in logic for the ALU determines the value of the carry-in base (CIB). The CIB is
normally a zero. As can be seen in the preceding section, the arithmetic operations allow
selection of either polarity for the CIB. The fixed-point mode randoms also allow the CARRY
bit to be selected as the CIB. This facilitates multiword arithmetic operations. Figure 2-11
shows the carry-in logic.

1-----------.
o ----------.

CRYOjCRY 16-----.
ROjR16----.....,

ALC Carry CARRY

Carry-in

o

Cin
DG-15383

Figure 2-11. CARRY Bit and Carry-In Logic

The CIB can be either the CARRY register or zero, depending on the RAND mode. Table
2-1 shows the CIB that goes with each RAND mode.

Carry-In Logic



2-17

Table 2-1. RAND Mode and CIB

RAND Mode

GEN

ATU

FIX (XC)

FIX (XZ)

FLT

o

o

CARRY

o

o

CIB

The polarity of the CIB is controlled by the lOP field. See "ALU," above, for the
possible CIB polarities.

The CARRY bit may be set as follows:

1) One -CARRY is set to one.

2) Zero -CARRY is set to zero.

3) CRYO/CRY16-CARRY is set to the carry-out from the ALU~ depending on whether
the operation is wide (FLAG3=l) or narrow (FLAG3=0), the carry-out will be for a
32-bit result (CRYO) or a 16-bit result (CRY16).

4) R Bus-CARRY is set to bit 0 or bit 16 of the R Bus (the output of the R-input
multiplexer-see Figure 2-10) depending on whether the operation is wide or narrow
(FLAG3=1 or 0).

5) ALC carry -CARRY is set according to an ALC macroinstruction. The carry is
dependent on IR[l0-111, which specify the carry operation~ on IR [5-71, which specify the
macroinstruction function~ and IR[8-91, which specify the shift function and its effect on
the carry.

The CARRY register is controlled by the RAND:<XC XZ>:COVS field of the
microinstruction.

Commercial Test and Edit PROMs

The test and edit PROMs test the validity of the least-significant byte on the A Bus as
commercial data. The PROMs are enabled by the TSEL:COM1 and TSEL:COM2
micro-orders. The test is specified by a code in the CNST field~ the test result may be used
by the microsequencer like any other test result. In addition, the PROMs translate commercial
data to BCD, which is sourced to the IY Bus and may be accessed by the IY:EDT
micro-order.

The same PROMs also generate the lOT test functions. The TSEL:IOT micro-order
enables these functions. Micro-orders in the CNST field specify the tests.

Commercial Test and Edit PROMs



2-18

Bit Shifter

The bit shifter can pass 32-bit or 16-bit data, swap the two least-significant bytes of data, or
shift the output of the ALU to the IY Bus one bit right or left for 32-bit or 16-bit data. The
bit shifter is shown in Figure 2-10. The shift can be either zero or one filled, depending on
the micro-order in the IY field. In addition, if RAND:<XC XZ>:COVS:ALC is coded, the
input bit to the shift will be forced to the ALC carry, which is determined from the
macroinstruction (see "Carry-in Logic," above). For narrow operations (FLAGO=O) , the
most-significant sixteen bits on the IY Bus are not used. They are filled with ones, except
when the result goes to the Address Generator, SPAD, or the register file. In these cases,
the 16-bit result OY06-31]) is sign extended into [0-15] by the input multiplexers of those
destinations.

Processor Status Register

The Processor Status Register (PSR) contains information about the state of the MV110000
processor. Table 2-2 shows the bits in the PSR.

Table 2-2. Processor Status Register

Bit Name Description

o OVK Overflow mask

OVR Fixed-poi nt overflow
indicator

2

3

4-15

IRES

IXCT

Interrupt resume

The interrupted instruction
was Executed via XCT or
PBX.

Reserved

The overflow mask indicates whether an overflow trap may occur~ when OVK is zero, the
trap is disabled. The overflow indicator tells whether a fixed-point overflow has occurred.
Note that unless both OVR and OVK are set, overflow faults cannot happen.

The RAND:COVS field controls the OVK and OVR status bits. If a micro-order is coded
to update OVR (from the current ALU computation) during an IPOP cycle, and the result
produces an overflow error, a microtrap is always generated. The trap microcode examines the
OVK bit to determine whether the fault should also be serviced at the macro level.

The IRES bit is used by the interrupt routines for resumable instructions. During an
interrupt, resumable instructions save state on the user stack, and must restore it when the
interrupt is over. When an instruction is interrupted, IRES is set. The microroutine for a
resumable instruction must test IRES before it begins to execute. From IRES, it determines
whether it has just started or is being resumed.

Processor Status Register



2-19

If the instruction can resume at more than one place, assign a number to each entry and
use that number to determine the proper entry point. To protect the system, do not push a
microaddress onto the user stack.

The IXCT bit is used by interrupt routines. It indicates that the executing instruction was
inserted into the I-stream by the CPU. The instruction was originally in an accumulator and
was executed as a result of an XCT or PBX instruction.

The PSR is controlled by the RAND:<XZ or XC>:COVS field.

CPD Bus Register-PDR

PDR is a 32-bit register that transfers data between the CPD Bus and ID Bus. In addition, it
can act as a counter. It can be read using the ID:PD micro-order.

The least-significant eight bits of PDR may be used as a counter. The micro-order
TSEL:CNT4 and TSEL:CNT8 will increment the eight-bit counter. CNT4 tests for the four
least-significant bits equal to zero; CNT8 tests for all eight bits equal to zero. The count
should not be tested until two cycles after the counter has been loaded with its initial value.

Normally, PDR is loaded every time the CPD Bus is active (i.e., whenever the CPDS
field is not coded with N). However, loading is suppressed during an LAT routine, a Cache
Block Crossing routine, or when the micro-orders RAND:ATU:ATUO:NPDR or
RAND:GEN:REGO:NPDR are coded. Loading of PDR is also suppressed when a page fault
occurs, up until the time that the ATU state is read.

The Floating-Point Unit

The Floating-Point Unit (FPU) performs all floating-point arithmetic as well as doing integer
multiply and divide. The FPU is synchronous with other MVIlOOOO units. Figure 2-12 shows
the floating-point unit.

The Floating-Point Unit



~

II="
~

"!I!j
;'
a
5·

IJCl

~
Qa
e
a-

"11ca·
e
(;
N
I......
~

-t::r
CD

"11
0"
m....
S·
co

I

"oS·....
c:
;:,
::;

CPM[0-31]

1
[32-63] [0-31) FD[0-31]

T: Reg File

r FPSR I I STATE I 16 x 64

FA[0-71)
[0-63]! [0-63]

FB[0-71]

M[8-71] ! r~

FS[8-71]

+
r DGD 1

Multiply FR[8-71] + [14-71]

jLogic

f r t
Sign 8 71

\ 1and

r DPR T 1Exponent F
Logic 9 1 72 I

I WR I[4-67] ! ![8-71)

*
) iMOF

I 1Hex Shift
0-15 L/R

I
FD[O-71l

~
N=



2-21

FPU Buses

FPU internal buses are 72 bits wide. Bits 0-7 form the sign and exponent of the floating-point
number and generally go to the sign and exponent sections of the FPU. Bits 8-71 are
manipulated by the mantissa section of the FPU. Bits 64-71 are guard bits~ they ensure
sufficient bits for rounding during all operations. For single-precision arithmetic (FLAG2=0),
only the most-significant bits on a bus are used. The effects of this are noted for the
individual buses.

The FA Bus is sourced by the A output of the floating-point register file and by the
Floating-Point STATE Register and the floating-point STATUS register. The bus sources the
R input of the mantissa ALU, the X register of the multiply logic, the STATE register, and
the R input of the exponent and sign logic. Bits 32-71 are zero for single-precision operations
(FLAG2=0) and bits 64-71 are zero for double-precision operations (FLAG2=1).

The FB Bus is sourced by the B output of the register file. The bus sources the S input
of the Mantissa ALU, the Y register of the multiply logic, and the S input of the exponent
and sign logic. When the FB Bus sources the ALU, bits 32-71 of the S input are zero for
single-precision operations (FLAG2=0) and bits 64-71 are zero for double-precision
operations (FLAG2= 1).

The FD Bus is sourced by the mantissa ALU (bits 8-71) and the exponent ALU (bits
1-7). It can source the working register and the floating-point register file.

The FR Bus is sourced by the Divide Partial Remainder register, the multiply ALU, the
FA Bus, the Divide Guard Digit register, and the round logic. It sources the working register
and the R input of the mantissa ALU.

The FS Bus is sourced by the hex shifter and the FB Bus. It sources the DGD register,
the working register, and the S input of the mantissa ALU. Bits 40-71 are zero for
single-precision operations (FLAG2=0)~ bits 64-71 are zero for double precision operations
(FLAG2=1) when the FB Bus is the source.

When the working register is the source, bits 40-71 are zero for single-precision
operations (FLAG2=0). When the FB Bus is the source, bits 32-71 are zero for
single-precision operations and bits 64-71 are zero for double-precision operations.

It is also possible to provide zeros on bits 8-71 of the FS bus for use in passing data on
the FR Bus through the ALU.

The M Bus sources the FR Bus and is sourced by the multiplier ALU.

Mantissa Logic

The mantissa logic of the FPU performs arithmetic on the mantissas of floating-point
numbers and does division and multiplication on integers.

Mantissa Logic



2-22

General Logic

Much of the mantissa logic is used by more than one arithmetic algorithm. This includes such
things as the register file, various FPU state registers, and the hex shifter.

Floating-Point Register File

The floating-point register file is a 16-word by 64-bit file that holds the operands for
floating-point operations and for integer multiply and divide. The register file has two output
ports, A and B, which are addressed by the IA and IB fields of the microword. The single
input port is addressed by the FeW field.

The A output port sources the FA Bus while the B port sources the FB Bus.

Floating-Point Status Register

The Floating-Point Status Register (FPSR) contains bits that specify floating-point overflow,
underflow, divide by zero, or mantissa overflow. Any of these conditions is a floating-point
error, but they are handled differently in microcode. The UNF and OVF bits cause a
microtrap to a handler when they are updated by FRG:UFS. The DVZ and MOF bits must
be set by microcode, which must explicitly test for the presence of the related error
conditions. The need for these tests occurs infrequently.

Additional bits perform other functions. The following table describes the bits in the
FPSR:

Bits Name Description

o ANY The value of the logical OR of FPSR[1-4].

OVF An exponent overflow occurred during processing of a .
floating-point number; the result is correct except that the
exponent is 128 too small. This will cause a microtrap when the
FPSR is updated by FRG:UFS.

2

3

4

5

UNF

DVZ

MOF

MOF

An exponent underflow occurred during processing of a
floating-point number; the result is correct except that the
exponent is 128 too large. This will cause a microtrap when the
FPSR is updated by FRG:UFS.

Microcode detected a zero divisor during a divide. DVZ is a
floating-point error that is detected by microcode, which is
responsible for jumping to an error handler.

Microcode detected a mantissa overflow during the FSCAL, FFAS,
FFMD or WFFAD instruction. MOF is a floating-point error that is
detected by microcode. Microcode is responsible for jumping to an
error handler.

This bit indicates mantissa overflow (MOF). While processing a
FSCAL instruction, the FPU shifted the mantissa left. During a
FFAS, FFMD, or WFFAD instruction, the result contained more than
15 bits for single-word results or 31 bits for double-word results.
MOF is a floating-point error that is detected by microcode, which
is responsible for jumping to an error handler.

Floating-Point Status Register



Bits Name Description

2-23

TE If this bit is set (= 1), a 1 in any of the FPSR bits 1-4 will result in
a floating-point macro trap. Microcode tests for this trap and jumps
to the appropriate handler.

6

7

8

9

z

N

RND

RES

The result of the last floating-point operation was true zero.

The result of the last floating-point operation was negative.

If this bit is set (= 1), then unbiased rounding is used for
floating-point operations. If this bit is not set (=0), then truncation
is used for floating-point operations.

Microcode sets this bit to indicate that an interrupt has occurred
during execution of resumable code.

10-11 Reserved for future use. Must be zero.

12-15 FPMOD Floating-point 10 code. Hardwired to 0111.

Floating-Point Status Register



2-24

Floating-Point STATE Register

The floating-point STATE register contains various bits that are necessary to restore the
Floating-Point Unit after its state has been altered. The following fields are included in the
state register:

Bits

o

Mnemonic

SA

SB

Description

Sign register for A operand

Sign register for B operand

2 A.EO.B

3 A.LT.B

4 SWAP

5 X.GT.15

6 ......XEWR

7 ......ERO

8-11 YSEL[0-3]

12-1 5 ......MAG [0-3]

Hex Shifter

Result from a compare operation. The A operand
equals the B operand.

Result from a compare operation. The A operand is
less than the B operand in magnitude.

This bit causes the A and B addresses for the
register file to be exchanged. It is used after a
compare operation to force the larger operand onto
the FA Bus. This bit has no effect on write
addressing.

Result from a compare operation. The absolute
exponent difference exceeds 15.

The most significant bit of the exponent working
register (EWR). This bit is an inverted extension bit.

The second most significant bit of the exponent R
Bus. This will be the EWRO if RAND:FLT:EXP:N is
coded.

The contents of the byte-selection counter (see
below).

The contents of the hex-shifter magnitude register
(see below).

The hex shifter can shift the output of the working register (WR) either left or right by up to
8 bytes in four-bit increments. The shifter sources the FS Bus through a multiplexer
controlled by the FS field of the microword. Micro-orders in this field also designate whether
the shift is left or right. When the shifter is the FS Bus source, the magnitude of the shift is
determined by the MAG portion of the floating-point STATE register.

MAG Register

The MAG register controls the hex shifter and provides a value that can be arithmetically
manipulated by the exponent ALU. MAG is part of the floating-point STATE register (bits
12-15). The MAG register is controlled by the RAND:FLT:SCNT field. Figure 2-13 shows the
MAG register.

MAG Register



FA[4-7] FB[4-7]

2-25

DG-09753

FD[4-7]
IY[O-3]

FNZ

MAG

DVP

LZD

j

Figure 2-13. The MAG Register Sources

The MAG register is sourced by the following:

A) The Leading Zero Detector (LZD) -The LZD determines the number of leading
hexadecimal zeros in the mantissa and places the result in MAG. MAG can then be
used to left-shift the mantissa and to adjust the exponent in order to normalize the
number. Note that on the first cycle the LZD gives a result for only the first two
hexadecimal digits in the mantissa. If the first three digits are zero, the full result must
be used on the next cycle to provide the correct value for MAG. If the first two
hexadecimal digits are not both zero, then all leading zeros have been detected and the
initial result is correct. Hardware resolves the correct MAG value, invisibly to
microcode, except that RAND:FLT:SCNT:LZD must be coded twice (see Chapter 3).

B) The value of bits 4-7 of the EF Bus (the output of the exponent ALU).

C) The absolute value of the difference between two exponents.

D) The value of bits 12-15 of the FA Bus.

E) The IY field -The value in the IY field of the microword can source the MAG register.

F) First Nibble Zero logic -If the first nibble of the mantissa is 0, MAG is set to -1 ~

otherwise, MAG is set to O.

G) Divide Prescale logic-MAG is set to 1 if there was a carry-out from the mantissa~

otherwise, MAG is set to O.

MAG Register



2-26

Mantissa ALU

The mantissa ALU is used for all floating-point operations, as well as integer multiplication
and division. It adds and subtracts mantissas after they have been aligned. During
multiplication, it sums the partial products produced by the multiply ALU. During division, it
calculates the quotient by adding or subtracting the divisor from the partial remainder.

Working Register

The working register holds the quotient in divide operations and the partial product in
multiply operations. For addition and subtraction prescaling, it holds the smaller of the two
operands. It also holds the ullnormalized result of all operations that use rounding and
normalization. The FR Bus, FS Bus, and FDI Bus can all source the working register. During
division, the working register performs I-bit left shifts and gets its least-significant bit from
the Q-bit. The Q-bit is an extension to the mantissa ALUand is derived from the mantissa
carry, the ALU operation, and the most significant bit of the ALU output. The hex shifter
can left-shift or right-shift the output of the working register.

Multiply Hardware

FPU multiplication uses the multiply ALU, the mantissa ALU, the X and Y registers, and
the working register. The operands are placed in the X and Y registers. The X register is
multiplied by a single byte of the Y register~ that byte is selected by the YSEL counter. Each
multiplication by the multiply ALU produces a partial product that is added to the
accumulated partial product in the working register. Figure 2-14 shows the mantissa hardware
used in multiplication.

Multiply Hardware



Register
File

FD[8-71]

I Working Register I

2-27

FA[8-63]

I x I Y

FB[8-63]

I YSEL Counter J

I Hex Shifter I

'--- ~

""""""- r---

,
"

I Multiply 32 x 8 I
~

HS[8-71]
Hi I I Low I

I M[8-71]

I
DG-15385

Figure 2-14. Multiply Data Paths

X and Y Registers



2-28

X and Y Registers

The X and Y registers hold the multiplicand and the multiplier, respectively, for integer and
mantissa multiplication. The Y register outputs a single byte at a time, selected by the YSEL
counter.

YSEL Counter

The YSEL counter is a 4-bit counter that designates which byte of the Y (multiplier) register
forms the current partial product. This counter is controlled by the FRG field of the
microword, and loaded from the IY field. Note that YSEL is part of the floating-point STATE
register (bits 8-10.

Multiply ALU

The multiply ALU multiplies the 56-bit X register by 8 bits of the Y register. This operation
forms a 64-bit partial product. Partial products are accumulated in the working register to
form the final product.

Divide Hardware

FPU division uses the mantissa ALU, the Divide Partial Remainder (DPR) register, the
working register, and the Divide Guard Digit (DGD) register. The DGD register preserves
the guard digits of the prescaled dividend when that value must be temporarily written back
to the register file (which has no guard-digit storage).

The floating-point ALU implements a nonrestoring division algorithm. The hardware
performs the following functions:

• The working register shifts in the quotient one bit at a time.

• The DPR register stores the remainder, left shifted by one bit.

• The mantissa ALU adds or subtracts the divisor from the remainder.

• The register file stores the divisor. During division, the FeW and IB fields must address
the divisor in order for the register outputs to be stable. Register file port B sources the
divisor to the S side of the mantissa ALU.

Figure 2-15 shows the divide data paths in the FPU. Note that two division cycles are
performed for each microinstruction cycle.

Divide Hardware



2-29

, .. r--
Left Shift 1 Bit 39/71

•I Working Register IRegister
File

A B

FA[O-71] FB[O-71 ]

FR[8-71 ]

I DGD Register
FS[8-71 ]

\R Mantissa ALU S /
I Obit

I DPR (Left Shift 1) I
FD[8-71 ]

DG-15386

Figure 2·1 5. Divide Data Paths

Divide Guard Digit Register

The Divide Ouard Digit (DOD) register holds the least-significant 8 bits of the dividend at
the beginning of a divide operation. The most-significant bits are in a register in the register
file. The DOD register and the A port of the register file together source the entire dividend
onto the FR Bus. The divisor is subtracted from the dividend during the initial division cycle,
and the result is loaded into the Divide Partial Remainder (DPR) register.

Divide Partial Remainder Register

The Divide Partial Remainder (DPR[8-71]) register holds the intermediate dividend during a
divide operation. The DPR is sourced by the mantissa ALU and sources the R side of that
ALU. When a value is passed through the DPR, it is left-shifted by one bit and the
least-significant digit is zero filled.

Divide Partial Remainder Register



2-30

Sign and Exponent Logic

The sign and exponent logic determines the signs of the results of arithmetic operations and
computes the exponents of floating-point numbers. Figure 2-16 shows the sign and exponent
logic..

FA[O-7]

FB[0-7]

SA SB Mux Mux

DG-09754

Sign Logic

FD[O-7]

R Exponent ALU S Carry-In

Figure 2-1 6. Sign and Exponent Logic

The operands for any operation are available on the FA and FB Buses, which also source
the sign registers (SA and SB). The sign logic uses the values in these registers to determine
the sign of the result. The RAND:FLT:SGN field of the microword controls the sign logic.

Exponents in MV110000 floating-point numbers are in excess-64 form. If exponents are
added or subtracted, as in multiply or divide, the excess-64 form must be restored by
subtracting or adding 64 to the result. These operations are performed by the
RAND:FLT:EXP micro-orders A64 and S64 in conjunction with the FX:X64 micro-order.

Exponent Working Register

The Exponent Working Register (EWR) provides temporary storage for exponent values. The
EWR is one of the possible inputs to the exponent ALU~ the MAG register can be added to
or subtracted from the EWR.

Exponent Working Register



2-31

Exponent ALU

The exponent ALU manipulates the exponents of floating-point numbers. The R side of the
ALU accepts input from either the EWR or the FA Bus~ the inputs to the S side can be the
FB Bus, the MAG register, or zero. The exponent ALU can add its inputs or subtract its S
input from its R input. Output from the ALU is to the FD Bus and the EWR. An exponent
value can be stored in the EWR for use in a future cycle. In addition to the Rand S inputs,
the ALU can add 1 to the exponent to correct for a carry-out (MOF) from the mantissa that
is adjusted by a right shift.

SA and SB Registers

The SA and SB registers are single-bit registers that hold the signs of the current operands.
They are sourced by the most-significant bits of the FA and FB Buses. In turn, they source
the sign logic.

Sign Logic

The sign logic determines the sign of the result of an FPU operation. The RAND:FLT:SGN
field determines how the sign is computed.

The ·Address Generator

The Address Generator (AG) provides logical addresses, which can then be transformed into
physical addresses by the Address Translation Unit (ATU). The AG input comes from either
the IP via the DISP bus, or from main memory via the CPM bus. The AG can source data
to the CPM bus, the CPD bus, the LA bus, and the DISP bus. Figure 2-17 shows the
Address Generator.

The Address Generator



2-32

CPM[O-31]
IPADD[O-1]

DEX[O-3]
SRC[O-3]

CSAA[O-3]
CSAB[O-3]

Register
File

Addressing Logic

A add B add RFIN Multiplexer

out A

Register
File

out B

in 1-+----------.1

CPD[O-31]-

AGB[O-31]

AY[O-31]

DG-15382

Buses

0-31

31,0-30

LA[O-31l-

'>----- DISP[O-31]

IP Displacement Reg

Constant Reg

Last LA Reg

Figure 2 -1 7. The Address Generator

The DISP bus is a 32-bit, bidirectional bus that carries data between the Instruction Processor
(IP) and the AG. The IP ALU sources the DISP bus, while both the IPPC register and the
ICP register take data off the bus. The IP normally drives the DISP bus. It uses the bus to
provide instruction displacements (either addressing offsets or immediate data) to the AG. If
an address calculation is specified as PC relative, the IP will add the PC to the address offset
before sending it to the AG. The AG ALU can source the DISP bus with the AY bus during
branches so the IP can update the IPPC and ICP registers.

The Logical Address (LA) bus carries logical addresses from the AG to the Address
Translation Unit (ATU). FLAG1 determines the width of the LA bus. If FLAG1= 0, the LA
bus is narrow and the AG drives the 15 least-significant bits and LAO; the Address
Translation Unit will supply the current ring bits (LA[l-3]) from CRE[l-31. If FLAG1= 1, the

Buses



2-33

LA bus is wide and the AG drives all the bits on the LA bus, except when
RAND:ATU:ATUl:AC is coded.

The LA bus is sourced by the AG ALU via the AY bus. Two separate drivers can drive
AY[O-31l or AGB[31l,AY[O-30] onto the LA bus. Unless overridden by the
RAND:ATU:ATUO micro-orders BYTE and WORD, the type of memory start determines
which bits go onto the bus: word and double word addresses use AY[O-31l~ byte addresses
use AGB[31],AY[O-301.

The A Y bus is a 32-bit, internal AG bus. It is sourced by the AG ALU and transfers data
to:

A) the last Logical Address (LA) register,

B) the Logical Address (LA) bus,

C) the IP DISP bus,

D) the AG register file (through the RFIN multiplexer), and

E) the CPM bus.

The Address Generator Bus (AGB) is a 32-bit, internal AG bus that drives the B input to
the AG ALU. The AGB is sourced by:

A) the Displacement (DISP) register,

B) the B output port of the AG register file,

C) the last LA register, and

D) the 8-bit constant register (with sign fill).

Register File

The AG register file has sixteen 32-bit registers, a single input port, and two output ports.
The output ports, A and B, are separately addressable. The A output goes to the A input of
the AG ALU and also drives the CPD bus~ the B output goes to the AGB bus. Input to the
register file is through a multiplexer that selects either the AY bus or the CPM bus.

Register File



2-34

By convention, registers in the file are assigned particular meanings as follows:

Register

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Register File Addressing

Meaning

Identical to macroprogram accumulator
o at IPOP (must contain same value as
ALU reg. 0 at IPOP)

Identical to macroprogram accumulator
1 at IPOP (must contain same value as
ALU reg. 1 at IPOP)

Identical to macroprogram accumulator
2 at IPOP (must contain the same value
as ALU reg. 2 at IPOP)

Identical to macroprogram accumulator
3 at IPOP (must contain the same value
as ALU reg. 3 at IPOP)

Wide stack pointer

Constant (= 1)

Constant (= 2)

Reserved register for Long Address
Translation (LAT)

Microprogram general register

Microprogram general register

Microprogram general register

Microprogram general register

Microprogram general register

Microprogram general register

Register addressed by ACSR

Register addressed by ACDR

The register file addressing logic controls the selection of particular registers within the file.
The logic produces separate addresses for the A and B output ports~ the B address is also the
address for the input port. The addresses for the register file can be supplied from fields in
the microword, fields in the macroword, or registers in the integer ALU.

Register File Addressing



2-35

When the AG is not performing effective address (EFA) calculations, the AA
(CSAA[O-3]) and AB (CSAB[O-3]) fields of the microword determine which registers will be
addressed. For AA or AB from 0 to D, the value in the field directly specifies the register in
the file. For AA or AB equal to E, the register is specified by the ACSR register (SRC[O-3])
of the integer ALU~ for AA or AB equal to F, the file address is specified by the ACDR
register (DES[O-3]) of the integer ALU.

When the AG is performing EFA calculations, the A output port addressing and the
ALU operation are controlled by the index bits from the macroinstruction:

A-Port
Address

00

01

10

11

AGB Bus Sources

Address Mode and Operation

Absolute macroaddressing-The A port is not used for
EFA calculations.

PC relative addressing-The A port is not used for
EFA calculations.

AC2 relative addressing-The A port reads AC2,
which is added to the displacement from the AGB
bus.

AC3 relative addressing -The A port reads AC3,
which is added to the displacement from the AGB
bus.

The AGE bus sources the B input of the AG ALU. The bus itself has four sources. The AGB
field of the microword selects a particular source. The sources are:

• the register file,

• the IP displacement register,

• the constant register with sign extension, and

• the last Logical Address (LA) register.

The register file is discussed above.

The IP displacement register is sourced by DISP[O-311. DISP[O-31l is the output of the IP
ALU. Usually, the displacement register contains the displacement portion of the next
macroinstruction from the Instruction Processor.

The constant register is loaded from the CONSTANT field of the microinstruction. The
register is loaded on every microinstruction, but when the field is being used for a
floating-point instruction, the bits in the register may be meaningless.

The last logical address register holds the address used for the most recent memory start.
Its input comes from the AY bus. It is loaded automatically on memory starts, except for
Long Address Translations (LATs) or Cache Block Crossings. LATs occur when the ATU
does not have an encached translation for the logical address from the AG. Thus, on return

AGB Bus Sources



2-36

from an LAT routine, the last logical address register holds the address of the original
memory request. Cache block crossings (CBXs) occur when a double word access is
performed for a memory address that ends in (octaO 7 (i.e., the eighth and last word in a
block).

RFIN Multiplexer

The Register File In (RFIN) multiplexer selects the source of the data that is read into the
AG register file. This data can come from the AY bus or the CPM bus. The multiplexer is
controlled by the AL field of the microword.

Address Generator ALU

The Address Generator (AG) ALV is 32 bits wide, with A and B inputs and a carry-in. Its A
input comes from the register file and its B input comes from the AGB bus. Its output goes
to the AY bus. The ALV is controlled by the AOP field of the microword. The following
functions are available:

• A + B

·B-A

• Pass the B input through unchanged

• Try to perform an Effective Address (EFA) calculation. If the index bits in the
macroinstruction are 00 or 01, the ALV passes the B input (sourced by the displacement
register). If the index bits are 10 or 11, the ALV performs A + B, where A is sourced
by AG2 or AG3, respectively, and B is sourced by the displacement register.

The Address Translation Unit

The Address Translation V nit (ATV) changes logical addresses from the Address Generator
into physical addresses that reference main memory. Because the logical address space is
much larger than the physical address space, it is necessary for the ATV to map any logical
address into a smaller physical address. Figure 2-18 shows the various parts of the ATV.

The Address Translation Unit



2-37

From Address Generator

LA[O-31 ]

DG-09755

LA[O-31]

Page Table
Addressing Logic

CPA[8-31]

LA[1-21]

Address
Translation

Cache and Logic

Modified/
Referenced

RAM

LA[1-21]

Protection
Logic

LAT
Trap
Logic

Figure 2-18. The Address Translation Unit

Address mapping is done on a page (2K-byte) basis. Software maintains page tables in
physical memory that specify the current mapping of all logical pages. Parts of those tables are
also kept in a cache in the ATU. If a mapping is encached, then the ATU can immediately
translate a logical address to a physical address. Otherwise, microcode must go to main
memory and examine the page tables to determine the correct physical address and to load
the cache with a new value.

The ATU also maintains the Segment Base Registers (SBRs). The SBRs registers point to
the page tables in main memory. They also contain certain status bits for a segment.

Besides addressing, the ATU also takes care of protection by checking each address for
ring maximization, indirection depth, and read/write/execute access. In addition, it maintains
the modified/referenced RAM, which keeps track of the current status of physical pages in
memory.

Address Translation Cache

The Address Translation Cache (see Figure 2-18) contains 1024 translations of logical to
physical addresses. It is addressed by the Logical Address (LA) bus. The cache outputs a
14-bit physical page address. The page address is concatenated with the 10-bit page offset to
form a full physical address on the CPU Physical Address (CPA) bus. The physical address
goes to the memory system. Microcode can load, flush, and read the cache.

Address Translation Cache



2-38

Referenced/Modified RAM

The referenced/modified RAM contains bits for each physical page that indicate whether that
particular page has been referenced (read or written) or modified (written). This information
is used by the operating system to determine which pages need to be swapped out to
secondary memory (j.e., disk) and whether a page can be overwritten.

The referenced and modified bits are part of the ATU state. This state can be read by
using the CPDS:ATS micro-order. The referenced and modified bits can be written by the
RAND:ATU:ATUO:WRRM micro-order. In addition, referenced bits can be read and reset by
the RAND:ATU:ATUO:RSRF micro-order. The specific use of the RSRF micro-order is
described in Chapter 3.

Validity RAM

The ATU validity RAM indicates the current state of the address translation cache. There are
1K bits in the RAM: one bit for each translation. Whenever an LAT loads a valid address
translation into the cache, the appropriate validity bit is set. The RAND:ATU:ATUO:PRGA
resets all the bits in the RAM. If the validity bit for a particular translation is not set, then an
LAT routine is necessary to produce the proper logical-to-physical address translation.

Logical Address Translation

If the logical address presented to the ATU is encached, then the ATU can simply place a
physical address on the CPA bus and the memory reference can continue. However, if the
logical address is not encached, then the ATU causes a Long Address Translation (LAT) trap
to occur. The micromachine goes into LAT mode and executes an LAT routine.

The LAT routine aborts the main memory start and inhibits any pending start, constructs
the new logical to physical address translation by going to page tables in memory, and then
restarts memory the same way that it was started before the LAT routine began. The new
translation is stored in the ATU cache.

Page Table Addressing Logic

The ATU has logic that expedites page table addressing. The micro-order
RAND:ATU:ATUO:RSBR automatically constructs an address from the current address in the
Logical Address Register (LAR). The logic addresses the appropriate SBR (determined by bits
1-3 of the LAR) and concatenates it to bits 4-12 or 13-21 of the LAR. Which set of bits is
chosen depends on the level bit (bit 1) of the SBR: for one-level page table addressing, the
logic chooses bits 13-21~ for two-level addressing, bits 4-12. This address is gated to the CPA
bus for an immediate memory reference. Figure 2-19 shows the page table addressing logic.

Page Table Addressing Logic



2-39

LABUF[0-31 ]

LABUF[22-31 ]

I Logical Address Register I
LAR[ 13-21].0

CPD[18-31]

!
DG-09756

LAR[1-3]

Segment
Base

Registers

PA[8-21 ]

T
CPA[8-21 ]

LAR[4-12].0

PA[22-31 ]

Ring Protection

Figure 2-19. Page Table Addressing Logic

The ATV maintains two registers for keeping track of protection rings. These are the Current
Ring of Execution (CRE) register and the Effective Source Register (ESR). The CRE register
is set to the ring in which the presently running program resides. The ESR register is used in
indirection chains~ it represents the ring for the last memory reference.

At macroinstruction boundaries, ESR is set to CRE. During an indirection chain, the
protection logic checks the newly started address against the ESR. All memory references
must be outward from the ring of execution. On valid memory references, the ESR is reset
to the new address~ this process continues until the end of the indirection chain or until it
reaches an indirection depth of fifteen.

Indirection Protection

The defer counter keeps track of indirection depth. The counter is set to zero at the
beginning of a macroinstruction~ the only exception occurs when there was an EFA started at
IPOP during the previous macroinstruction. The counter will be incremented each time an
indirection is resolved. (Incrementing occurs when the RAND:ATV:ATV1:DF micro-order is
coded and the test for ending the indirection chain is false.)

The defer counter will allow fifteen levels of indirection for all the indirection resolution
required by a macroinstruction. For instance, if an instruction takes a stack fault and must
resolve a pointer, that resolution is added to the defer count. At fifteen levels of indirection,
a protection trap occurs if the ATV is on~ if the ATV is off, there is no protection.

Indirection Protection



2-40

If more than one indirection resolution occurs in a macroinstruction, microcode must
reset ESR to CRE at the beginning of each such resolution. This is done with the following
steps:

1) Code RAND:ATU:ATUl:AC, which sets the logical address ring bits to CRE, and

2) Code RAND:ATU:ATUO:LCRE, which loads both CRE and ESR from the logical
address ring bits.

Read/Write/Execute Protection

The ATU contains a read/write/execute RAM. This RAM is loaded from bits 2-4 of a PTE
and reflects the current protection status of pages with translations in the address translation
cache. The bits are written whenever a new address translation is produced. These bits can
cause a memory protection error if microcode attempts to access a page illegally.

ATU State

The Address Translation Unit CATU) has 32 bits of state. Table 2-3 explains these bits.

Table 2-3. Address Translation Unit State

Description

Indicates whether the instruction can be restarted
after a page fault.

The Effective Source Ring

An XCT start is pending.

A memory start is still pending.

A cache-block crossing, read double-word assembly
is pending.

The fault code for a hardware protection trap.

Indicates whether the last non-LAT start was an
Instruction Cache Address Translation (ICAT).

Indicates whether the last non-LAT start was an
Instruction Processor start (IPST).

The mode bits for the last non-LAT start.

Indicates whether the processor is in the LAT state.

Indicates whether the last non-LAT start was a write.

Indicates whether the last non-LAT start was during a
Cache Block Crossing.

Bits Name

0 "'RESTART

1-3 ESR[1-3]

4-6 "'FLT CODE[O-2]

7 "'ASMPND

16 "'MEMSTARTED

17 "'SXCT STRT

18 "'IPST STRT

19 "'ICAT STRT

20 "'CPWRITE@

21-23 "'CPMODE@[O-2]

24 "'CBXRTIN

25 "'AT:SET LAT

26 MOD The modify bit of the page addressed the preceding
cycle.

ATU State



2-41

Table 2-3. Address Translation Unit State
(Continued)

Bits Name

27 REF

28-31 REF[0-3]

Description

The reference bit of the page addressed the
preceding cycle.

The four reference bits for the quad page addressed
the preceding cycle.

These state bits can be sourced to the CPD bus with the CPDS:ATS micro-order. The ESR
and ""CPMODE bits can be restored from the LA and CPD buses with the
RAND:ATU:ATUO:LATS micro-order. The ""CPMODE bits are explained under the LATS
micro-order in Chapter 3. Table 2-4 shows the meanings of values in the FLTCODE field.

Table 2-4. ATU State Fault Codes

Code Meaning

o Read protection fault

Write protection fault

2 Execute protection fault

4 Inward reference

5 Defer protection (more
than 15 indirect
references)

ATV Diagnostic Register

The ATU Diagnostic Register is a 24-bit register that can hold either the current value on the
CPA bus or various internal state bits of the CPU. These bits can be sourced (inverted) on
the CPD Bus with the CPDS:ATD micro-order. The register captures data whenever a CPU
memory start is coded (including IP starts). If RAND:ATU:ATUO:XTND is coded, then
CPA[8-31] sources the register~ if XTND is not coded, the register will hold the following
bits:

Bits

8-9

10

11

12

Signal

""BP:CPRT

""BP:CPWT

""PERMITRD

Description

Reserved

The read transfer signal on the backplane.

The write transfer signal on the backplane.

The read-enable bit in the read/write/execute RAM
for the page addressed by the current logical
address.

ATV Diagnostic Register



2-42

Bits Signal

13 "'PERMITWR

14 "'PERMITXEQ

15 NEWXLAT

16 FRC LAT

17 "'GDXLATA

18 "'GDXLATB

19 VLDSETSEL

20 "'VALID TAG

21-31 TAGLA[4-14]

ATU Dispatch

Description

The write-enable bit in the read/write/execute RAM
for the page addressed by the current logical
address.

The execute-enable bit in the read/write/execute
RAM for the page addressed by the current logical
address.

LOAD STATUS bit for translation cache, protection,
and validity RAM.

The Force Logical Address Translation bit in the of
the CBUS register R1 (bit 5). This bit lets the SCP
force LAT after every memory reference from
microcode. This bit is valid only when the ATU is on
and it is not in a LAT routine.

The output of the address-translation cache
comparator that compares LA[4-11] with
TAGLA[4-11].

The output of the address-translation cache
comparator that compares LA[1 2-14] to
TAGLA[12-14]. If FRC LAT is set, this output will
always be zero.

The set-selector bit for the validity RAM. When this
bit equals 1, it designates set A; when 0, set B.

The output of the validity RAM designated by
VLDSETSEL. The RAM is addressed by the current
logical address or by the purge counter.

The output of the tag store for the address translation
cache.

The ATU can produce a two-bit code that goes to the microsequencer and can be used as
part of a dispatched microaddress. This type of dispatching is used in Long Address
Translation (LAT). The code provides a quick means to branch on the differences between
one-level and two-level page tables and between memory start types. The NAC:DSR:A
micro-order implements dispatching.

Micro-orders in the RAND:ATU:ATUO field distinguish the various types of memory
start. The possible meanings of the dispatch code, as generated by the ATU, are as follows:

ATV Dispatch



2-43

Code Meaning

00 Start memory for the second Page Table Entry (PTE).
This means that the first memory start for the first
PTE has already been performed using an RBSR
micro-order. This second memory start must use a
LPTA micro-order during the memory start in order to
correctly address the second PTE.

01 Start memory using an IPST micro-order, i.e., an IP
start caused the original LAT routine, and memory
must be restarted in the same manner.

10 Start memory using an ICAT miro-order, i.e., an
instruction cache translation caused the original LAT
routine, and memory must be restarted in the same
manner.

11 Start memory using an OPTA micro-order. OPTA
means that the final address has been formed and is
sourced to the CPA bus for this memory start.

Note: Within an LAT routine, IPST and ICAT have the meaning of OPTA in addition to
their regular meanings. When a routine is simply examining PTEs, any of the last three
dispatch codes means that the final translation has been encountered.

The CPD Bus and Transfer Register

The ATU cannot take data directly off the CP Memory (CPM) bus. To get information from
memory (e.g., a PTE during an LAT) , data is passed through the transfer registers (TREG)
of the integer ALU. See the integer ALU section for the details of this register.

Instruction Processor

The Instruction Processor (IP) decodes macroinstructions from the instruction stream. It
provides starting microaddresses to the WCS for the microroutines that implement the
instructions. The IP decode process is pipelined, so that at any given time as many as four
different instructions may be in various stages of decoding. The IP has an instruction cache
that contains the currently executing instructions. It also maintains the macroinstruction
program counter (IPPC). Figure 2-20 shows the IP.

Instruction Processor



2-44

Instruction
Cache

l
IPPC

Instruction
Parser Starting

Microaddress

[ PCN

DG-09757

DISP[O-31]

CPD[O-31]

Figure 2-20. The Instruction Processor

When the IP executes instructions sequentially, PCX (which is derived from PCN and
the instruction length) points to the executing instruction, PCN points to instruction to be
executed next, and IPPC points to the instruction after that. When the next instruction is out
of sequence, e.g., because of a JMP, microcode loads a new location into the IPPC register.
PCX always points to the currently executing macroinstruction.

Microcode can examine PCX and PCN using micro-orders in the CPDS field. In addition,
it can examine the next instruction location whether it comes from PCN or IPPC.

Displacement fields from macroinstructions can go to the Address Generator over the
DISP bus.

Instruction Processor State

IP state consists of the following registers:

• The Instruction Processor Program Counter (IPPC)

• The Next Program Counter (PCN)

Instruction Processor



2-45

• The LPCX[O-ll register, which contains the length of the currently executing instruction

• The ION flag, which is the interrupt mask bit

• The XCTFLG, which indicates whether the current macroinstruction resulted from an
XCT

The CPDS:IPS micro-order sources IP state onto the CPD bus as follows:

CPO
Bits

30-31

29

28

IP State Bits

LPCX[O-1 ]

ION

XCTFLG

Description

Length of currently
executing instruction

Master interrupt mask bit

Bit indicating that the
current macroinstruction
was the result of an XCT
instruction

Interrupts

Interrupts are handled by the IP. Interrupts are normally taken between macroinstructions as
a result of the IP forcing the starting microaddress (STUAD) to the beginning of the
interrupt routine.

If an instruction takes longer to execute than the specified interrupt latency (12
microseconds), microcode must acknowledge interrupts within that instruction. By convention,
microcode tests for interrupts within 64 instruction cycles if an instruction requires more than
80 cycles to execute. We classify interruptable instructions as "restartable" or "resumable."

A restartable instruction can safely back out of the current operation or can leave the
accumulators in such a state the instruction can procede with its operation. These instructions
manage interrupts by either backing out or updating the accumulators, pointing the IPPC at
themselves, and performing an IPOP. At IPOP the IP forces the STUAD to the interrupt
routine. On returning from the interrupt, execution starts again at the interrupted instruction.
A wide character move (WCMV) is an example of a restartable instruction. Because the data
in the accumulators is updated with each byte moved, the instruction can be restarted at any
point.

A resumable instruction cannot back out of the current operation and requires more state
than the accumulators. In this case, state is pushed on the user's stack in the same ring as
the interrupted instruction (to maintain system integrity, a microaddress may not be pushed
on the user's stack). PSR2 is set, which indicates that an instruction must be resumed, IPPC
is pointed at the instruction itself, and an IPOP is performed. When the instruction
reexecutes, it must check PSR2 to discover whether it must begin fresh or continue from
where it left off.

Interrupts



2-46

I/O Protocols

The MV110000 CPU communicates with the I/O Controller (laC) (and therefore all
peripherals) via the CPD bus. The lac uses the least-significant 16 bits of the bus to
transmit and receive data. TREG is the only valid CPD source for communication with the
lac. Bits 14-15 are command bits that tell the lac what the CPU expects it to do. These bits
are coded as follows:

CPD[14-15]

00

01

10

11

Explanation of Command

Clear (No op)

Instruction: the data on
CPD[16-31] is interpreted
as a command. See below
for commands.

Input: the data on
CPD[16-31] is irrelevant.

Output: the data on
CPD[16-31] goes to the
IOC.

There are two separate instruction formats: one for programmed I/O and one for
nonprogrammed I/O. These formats are shown in Figure 2-21.

Programmed r/o Format:

16 17-19 20 21-23 24-25 26-31

~ Port 0 OP code 1__f_--L.._D_e_V_i_c_e_c_o_d_e---o1

Nonprogrammed r/o Format:

16 17-19

U Port

20-31

Register

Figure 2-21. I/O Command Formats

The first bit in the command specifies programmed or non-programmed I/O. The
remaining fields have the following meanings:

• Port -The lac port address. Port 7 is the broadcast port. Port 0 and 1 are supported.

• R - Reserved.

I/O Protocols



2-47

• OPcode -The programmed I/O command: NIO, DIA, DOA, etc.

• f -The control bits for Busy/Done flags. These are S, C, P for non-SKP instructions,
and BZ, BN, DZ, DN for SKP instructions.

• Device Code -The code for a device on the I/O bus.

• Register - The address of a register in the port. This is the register that will be read
from or written to.

The following sequence transfers data to and from the IOC:

1) Issue an instruction (01) command.

2) Issue either an input (10) command or an output (11) command.

3) Wait two cycles and then test I/O Busy (TSEL:IOB).

4) Wait for I/O Busy to clear, and, if Step 2 was input, read the input data from the CPD
bus.

5) Issue a clear (00) command to prepare for next instruction.

End of Chapter

I/O Protocols



Chapter 3
Micro-order Format and Instruction

Set

This chapter describes the micro-orders in the MV110000 microword. The microword
contains 104 bits, including spare and parity bits (see Figure 3-1).

Microsequencer

~ Address Generator

Address
Translation
Unit Buses

NAC AA AB AGB AOP AL MEMS MEMC CPMS CPDS
20 4 4 2 2 2 3 2 3 4

General

Integer ALU

_R_~_~_D_I....._~_A_I ~B [f]_~_S_I-I_I_~_P_[I] ~L I

Floating Point Unit

/1
I

CNST 8 , FL FCW FRG FX Spare ParityI

2 4 4 1 4 2
FR FS FOP FW
2 2 2 2

I
I
~

Figure 3-1. The MV/10000 Microword

The microword is divided according to its control functions. Each subsystem in the MV110000
processor has its own microword fields~ in addition, the RAND field contains micro-orders
that control several different subsystems.



3-2

Each micro-order is described separately in this chapter. Each description begins with a
descriptive title, followed by the microassembler mnemonic and the value (in hexadecimal)
for that micro-order. For example:

Sample micro-order

SAMP

00

Description of micro-order.

N"AC-N"ext Address Control

The Next Address Control (NAC) field controls logic on the microsequencer board. The
NAC field has two separate formats, depending on whether the microinstruction is conditional
or unconditional. Figure 3-2 shows the NAC subfields.

COP TSEL:I Addre s s 1 0
I
I

3 7 I I

Address DSR 'r-,
8 2 I

I

UCOP /1 Address 14
,

ESC ,
(111 ) 3 I I

Address DSR 'r-'
I

12 2 I,

Conditional Format

Unconditional Format

Figure 3-2. The NAC Field

The NAC field controls:

• stack operation and address selection,

• test selection, and

• dispatching.

Note that a micro-order contains either a COP and TSEL field or a DCOP field. All
micro-orders beginning '111' are unconditional. (This escape is automatically coded by the
microassembler whenever a DCOP micro-order is specified,)

NAC -Next Address Control



3-3

Addresses

Microsequencer addresses can come from:

1) the incremented microprogram counter (uPC + 1),

2) the top-of-stack (TOS) register,

3) the AA Bus, or

4) the dispatch register.

The incremented microprogram counter value is the address immediately following the
current one with wrap-around on 1K pages. The top-of-stack register value is an address that
was previously pushed onto the stack by an NAC:COP or NAC:VCOP micro-order.

The AA Bus is sourced differently depending on whether a micro-order is conditional or
unconditional. For conditional micro-orders, the least significant ten bits come from the
NAC:ADDRESS field and the most significant bits are equal to the current page~ thus
conditional micro-orders cannot address beyond the current page boundaries. For
unconditional micro-orders, all fourteen bits on the AA Bus come from the NAC:ADDRESS
field~ thus unconditional micro-orders can address all of WCS.

Addresses from the dispatch register maintain the same distinction between conditional
and unconditional. Like the AA Bus addresses, conditional dispatched addresses take the
current page number for the four most significant bits. However, the AA Bus supplies only
the most-significant address bits for micro-orders that use dispatching. The least-significant bits
are provided from the dispatch register or the Address Translation V nit (ATV). Table 3-1
shows the possible address forms for MV110000 microcode.

Table 3-1. MV/10000 Microaddresses

Symbol

uPC+1

TOS

AA

PA

ADA

PDA

Description

The 14-bit address from the incremented microprogram counter.

The address that is currently at the top of the microstack.

The 14-bit address from the microinstruction. [unconditional,
undispatched]

The current page number concatenated to the 10-bit page offset in
the microinstruction (NAC[1 0-19]). [conditional, undispatched]

The address from the dispatch multiplexer that is based on the
NAC:ADDRESS field. [unconditional, dispatched]

The address from the dispatch multiplexer that is based on the
NAC:ADDRESS field concatenated to the current page
number. [conditional, dispatched]

NAC -Next Address Control



3-4

Stack Control and Address Selection

The stack control and address selection logic is controlled by the COP and DCOP
subfields of the NAC field. This logic includes:

• the AA selector logic, which determines the source of the AA Bus~

• the microaddress selector logic, which determines the source of the WCS address~

• the microstack source selector logic, which determines what will be pushed onto the
microstack~ and

• the microstack control logic, which determines whether the stack will be pushed or
popped.

N"AC:COP-Conditional OPcode

The COP field controls conditional actions by the microsequencer, i.e., those actions that
depend on the outcome of a test. The micro-order specifies the next address and the stack
operation for both the true and the false test results. The particular test is specified in the
NAC:TSEL field. Table 3-2 summarizes COP field micro-orders. (In the table .+ 1 means
uPC+ 1.)

Table 3-2. Conditional Microorders in the OP Field

Mnemonic Value True False Description

uPC uStack uPC uStack

CJMP 0 PA - .+1 - Conditional jump

CJSR 1 PA PSH .+1 - Jump and save return
.+1

CDSP 2 PDA - .+1 - Conditional dispatch

CABT 3 PA POP .+1 POP Cond jump, abort TOS

CRTN 4 TOS POP PA - Conditional return

TWB 5 TOS POP PA POP Two-way branch

CRST 6 TOS POP PA - Conditional restore

- 7 - - - - Escape to unconditionals

NAC:COP -Conditional OPcode



3-5

Conditional Jump

CJMP

o

If the test is true, CJMP transfers control to the address specified in NAC:ADDRESS.
This address must be within the current page~ CJMP's 10-bit address field cannot address
more than a page at a time. If the test is false, CJMP goes to uPC +1. CJMP has no effect
on the microstack.

Jump and Save Return

CJSR

1

CJSR is identical to CJMP, except that if the test is true, uPC +1 is pushed onto the
microstack. At some later point, control can be returned by popping the stack.

Conditional Dispatch

CDSP

2

If the test is true, CDSP forms an address using the dispatch register or bits from the
ATU. If the test is false, control transfers to the following instruction. Note that CDSP
requires the use of a DSR micro-order to further specify the dispatching.

Conditional Jump, Abort TOS

CABT

3

If the test is true, CABT transfers control to the address specified in the NAC:ADDRESS
field. If the test is false, control transfers to the following instruction. In this regard, CABT is
identical to CJMP. However, CABT has the additional effect that regardless of the test
outcome, the microstack is popped.

NAC:COP-Conditional OPcode



3-6

Conditional Return

CRTN

4

If the test is true, CRTN transfers control to the address at the top of the stack and pops
the microstack. If it is false, control transfers to the address in the NAC:ADDRESS field and
the microstack is unchanged.

Two- way Branch

TWB

5

If the test is true, TWB transfers control to the address at the top of the microstack. If it
is false, control transfers to the address in the NAC:ADDRESS field. Regardless of the test
result, TWB pops the microstack.

Conditional Restore

CRST

6

If the test is true, CRST:

A) transfers control to the address at the top of the microstack,

B) pops the microstack, and

C) forces the test condition for the next microcycle to come from the restored microstack
(TOS14).

If the test is false, control transfers to the address in the NAC:ADDRESS field and the
microstack is unchanged.

Note that CRST is the only micro-order that restores the test condition~ it is used
primarily by trap routines.

N"AC:TSEL-Test Selection

The test select (TSEL) field selects tests for COP micro-orders. There are a total of 64 tests.
Unless otherwise noted, the test result applies to the test condition in the preceding
microcycle.

The polarity bit controls the value of the test return: if the polarity is changed from the
value in the table, the meaning of the test is reversed. For instance, if the polarity bit for

NAC :TSEL - Test Selection



3-7

lOB is changed from 1 to 0, the meaning becomes "I/O not busy."

Note: The microassembler automatically changes the polarity bit if a mnemonic is preceded by
"N," e.g., "NIOB." Also, the assembler recognizes FALSE as having the meaning NTRUE.

Microsequencer Tests

The following tests apply particularly to the microsequencer.

True

TRUE

Polarity=O Value=O

The outcome of the TRUE test is always true, forcing the action specified in the COP
field. Coding FALSE will reverse the polarity bit and force the false choice.

CPD31 Equals 1

CPD31

Polarity = 1 Value = 1

CPD31 tests the value of the least significant bit on the CPD Bus. If the bit is 1, the test
is true~ if 0, false.

Microstack Empty

USMT

Polarity = 1 Value = 2

USMT is true if there is no more data in the microstack~ if values remain to be popped,
the test is false.

Interrupt Pending

INTR

Polarity=l Value=3

INTR is true if there is an unserviced interrupt waiting and the interrupt on flag
(ION) is set to 1.

Microsequencer Tests



3-8

fO Busy

lOB

Polarity = 1 Value = 4

lOB is true if the I/O Controller (IOC) is busy, i.e., if it cannot receive or source data at
this time. See the section "I/O Protocols" in Chapter 2.

IP Started

IPST

Polarity=O Value=5

This test is true if, during the current macroinstruction, a RAND:ATU:ATUO:IPST
micro-order has been issued. This means that a new value has been loaded into IPPC.

SCP Command Valid

CIRV

Polarity=1 Value=5

CIRV is true if the CIR register on the SCP has valid data~ i.e., an SCP request is ready.

Macroinstruction Executed

XCTF

Polarity=O Value=6

XCTF is true if an Execute microinstruction sequence inserted the current
macroinstruction in the instruction stream (rather than the instruction coming from memory).
Note that both XCT and PBX instructions perform Execute sequences.

Perform Rounding

RND

Polarity=O Value=7

RND is true if bit 8 of the Floating Point Status Register (FPSR) is 1. FPSR8 specifies
whether rounding or truncation takes place in floating-point arithmetic. FPSR8 = 1 indicates
unbiased rounding~ FPSR8 =0 indicates truncation.

Microsequencer Tests



3-9

Flag Tests

FLG[O-7]

Polarity=O Value = l8-F]

The FLG# tests are true if the appropriate flag is 1, and false if the flag is O. The
"Flags" section of Chapter 2 explains the meanings of the individual flags.

Address Translation Unit Tests

The following tests are used by the Address Translation Unit (ATU).

Test Most Significant Bit

INDR

Polarity = 1 Value = 10

This micro-order tests the most-significant bit in the data coming from memory. If a
double-word memory start was initiated in MEMS, then it tests CPMO~ if a single-word
memory start was initiated, it tests CPMI6. The test is true if the tested bit is 1.

This test is used to examine the indirection bit in data brought from main memory.

Current Ring Equal to Zero

RNGO

Polarity = 1 Value = 11

This micro-order tests to see if the Current Ring of Execution (CRE) is zero, i.e., if the
program is currently in the operating system segment. The test is true if CRE = O.

Check for Inward Reference

RMAX

Polarity = 1 Value = 12

Checks the current reference to see whether it is less than the Current Ring of Execution
(CRE) or the Effective Source Ring (ESR). If the micro-order RAND:ATU:ATUl:DF (the
defer micro-order) was coded with the last memory start, then the processor is in an
indirection chain, and the test uses the ESR. Otherwise, the test uses the CRE.

Note that memory need not be started for this test: simply sourcing the address to the
LA Bus is sufficient. If memory is started, then the memory protection mechanism is also
armed.

Address Translation Unit Tests



3-10

Ring Less Than Effective Source Ring

LESR

Polarity=O Value= 13

Checks to see whether the ring bits for the current logical address are less than the
Effective Source Ring (ESR). The test is true for LA D-3] < ESR D-3] .

Ring Greater Than Current Ring of Execution

GCRE

Polarity=O Value=14

Checks to see whether the ring bits for the current logical address are greater than the
Current Ring of Execution (CRE). The test is true for LA[I-3] > CRED·3].

Ring Equal to Current Ring of Execution

ECRE

Polarity=O Value= 15

Checks to see whether the ring bits of the current logical address are equal t.o the
Current Ring of Execution (CRE). The test is true for LAD·3] = CRE[I-3].

Ring Less Than Current Ring of Execution

LCRE

Polarity=O Value= 16

Checks to see whether the ring bits of the current logical address are less than the
Current Ring of Execution (CRE). The test is true for LAD-3] < CRED-3].

Detect Cache Block Boundary

CBLK

Polarity = 1 Value = 17

Checks to see whether the current logical address is on the upper boundary of a cache
block in main memory. Cache blocks contain eight 16-bit words~ the least-significant three bits
in a logical address determine a word's location in the block. This micro-order detects
whether the least-significant three bits are all ones. The test is true if LA [29-31] = 7.

Address Translation Unit Tests



3-11

Address Translation Unit On

ATON

Polarity=O Value = 18

This test is true if the Address Translation Unit is on this cycle.

Address Translation Unit Purging

PRGB

Polarity=O Value = 19

This test is true if the Address Translation Unit is currently purging its translation cache.

Check for Valid Page Table Entry

VPTE

Polarity = 1 Value = lA

This micro-order checks the two most-significant bits on the CPM Bus. If the last
memory start was with RAND:ATU:ATUO:<RSBR or LPTA> these bits will be the "valid"
and "resident" bits of a Page Table Entry. This test is true if CPM[O-I] =3.

Check for Valid Segment Base Register

VSBR

Polarity = 1 Value = IB

This micro-order checks the ~'valid" and "length" bits of Segment Base Register (SBR).
If the length bit is zero (I-level page table), then bits 4-12 of the current logical address
should be zero. This test is true if:

SBRO=1 AND (SBR1=1 OR (SBR1=O AND LAR[4-12]=O))

Check Valid Bit

VLD

Polarity = 1 Value = lC

Depending the coding of RAND:ATU:ATUO, this micro-order examines the valid bit for
a Segment Base Register or a Page Table Entry (PTE).

Address Translation Unit Tests



3-12

If RAND:ATU:ATUO:RSBR was coded last cycle, then this test is true if SBRO = 1.

If RAND:ATU:ATUO:<OPTA or LPTA> is coded, then this test is true if
CPDO= 1. (Presumably, CPDO is the valid bit for a PTE that was addressed by RSBR or
LPTA in a previous microinstruction.)

Macroinstruction Decoded

IVLD

Polarity=O Value = ID

IVLD is true if the Instruction Processor has a macroinstruction decoded. If an
instruction is decoded, then IPOP can proceed.

I/O Allowed

IOEN

Polarity=O Value = IE

This test is true if I/O is allowed in the current ring.

PC Relative Addressing

IXPC

Polarity=O Value = IE

This test is true if the index bits of the macroinstruction indicate PC relative addressing
(= 01). This test is valid only during the first cycle of a macroinstruction.

Integer ALU Tests

The following tests apply to functions in the integer ALU.

Test Bit 28 on the Y Bus

Y28

Polarity=O Value=28

This test is true if bit Y28 is one, and false if it is zero.

Integer ALU Tests



3-13

Test Bit 29 on the Y Bus

Y29

Polarity=O Value=29

This test is true if bit Y29 is one, and false if it is zero.

Test Bit 30 on the Y Bus

Y30

Polarity=O Value=2A

This test is true if bit Y30 is one, and false if it is zero.

Test Bit 31 on the Y Bus

Y31

Polarity=O Value=2B

This test is true if bit Y31 is one, and false if it is zero.

Test Bit 31 on the D Bus

D31

Polarity = 1 Value=2C

This test is true if bit D31 is one, and false if it is zero.

Test the Sign Bit on the D Bus

DSGN

Polarity=O Value=2D

This test is true if the D Bus sign bit is 1. FLG3 determines which bit is the sign bit: if
FLG3=O, D16 is the sign bit~ if FLG3=1, DO is the sign bit.

Integer ALU Tests



3-14

Compare the Source and Destination Addresses

CaMP

Polarity=O Value=2E

This test is true if the ACSR and ACDR point to the same register in the integer
regIster file.

Test the Resumable Instruction Bit

IRES

Polarity = 0 Value = 2F

The Processor Status Register (PSR) bit 2 indicates whether a resumable instruction has
been interrupted. All resumable instructions must test this bit when they begin execution. If
it is set, they must restore state from the user stack.

Commercial Data Validity Test 1

COMl

Polarity=O Value=30

The COMl test validates commercial data. A PROM tests the least-significant byte on the
A Bus of the integer ALU section, i.e., the data must be available at the A output port of
the integer register file. The test to be performed is specified in the CNST field. Table 3-3
describes the tests. The inputs are those octal values that will cause COMl = true.

Table 3-3. COM1 Tests

Integer ALU Tests

Mnemonic

VCB

VSB

VSL

VCS

Value

o

2

3

Description

Validate Character Byte
Inputs: 040 101-132 141-172

Validate Sign Byte
Inputs: 053 055

Validate Sign Low (Low nibble in byte)
Inputs: 014 015 017

Validate Commercial Sign Byte
Inputs: 015 055 175 112-122



3-15

Commercial Data Validity Test and Translation

COM2

Polarity=O Value=31

The COM2 test validates commercial data. A PROM tests the least-significant byte on the
A Bus of the integer ALU section, i.e., data must be available at the A output port of the
integer register file. The test to be performed is specified in the CNST field. Table 3-4
describes the tests. The inputs are those octal values that will cause COM2 = true. The
outputs are the hexadecimal values that the inputs are translated into. The micro-order
IY:EDT makes the outputs available on the IY Bus.

Table 3-4. COM2 Tests

Mnemonic

VSO

Value Description

4 Validate Sign Overpunch and Translate Data
Inputs: 040 053 055 060-071 101-111 112-122 173 175
Outputs: 0 0 0 0-9 1-9 1-9 0 0

VDB

VOL

VDH

I/O Tests

lOT

5

6

7

Validate Digit Byte
Inputs: 040 060-071 Outputs: 0 0-9

Validate Low Digit (Low nibble in byte)
Inputs: 000-011
Outputs: 0-9

Validate High Digit (High nibble in byte)
Inputs: 000-011
Outputs: 0-9

Polarity=O Value=32

The lOT micro-order is used for I/O skips and for decoding NOVA I/O instructions. The
test is specified in the CNST field. The data to be tested must be on the A Bus of the
integer ALU, i.e., it must be available at the A output port of the integer register file. Table
3-5 shows the CNST field micro-orders that specify the tests.

Integer ALU Tests



3-16

Table 3-5. lOT Tests

Mnemonic

CPUD

SKPT

Value Description

o CPU Device Code: A[24-31] = xx11 1111

Skip test: A[28-31] = OOOx or 011 x or 10xO or 11 x1

IONF 2 ION Flag change: A[24-25] = 10 or 01

Test the Least-Significant ALU Bit

F31

Polarity=O Value=33

This test is true if F31, the ALU output's least-significant bit, equals 1.

Carry from Least-Significant 4 Bits

CRY28

Polarity=O Value=34

This test is true if the carry-out from bits 28-31 of the ALU equals 1.

Test the Sign on the R Bus

RSGN

Polarity=O Value=35

The test is true if the R Bus sign bit equals 1. For FLAG3= 1, the sign bit is RO~ for
FLAG3 =0, the sign bit is R16.

Test the Most-Significant Bit on the Y Bus

YO

Polarity=O Value=37

This test is true if IY[O] equals 1. For narrow operations from the bit shifter, this test is
always true.

Integer ALU Tests



3-17

Test 8-bit PDR Counter

CNT8

Polarity = 1 Value=38

Test and increment the CPD Bus register (PQR) in the integer ALD. This test is true if
PDR[24-31l is all ones. Note that, for this micro-order, PDR is considered an 8-bit
counter. After testing, the counter is incremented by one. (This micro-order is functionally
equivalent to incrementing the counter and testing for 0.)

Test 4-bit PDR Counter

CNT4

Polarity = 1 Value=39

Test and increment the CPD Bus register (PDR) in the integer ALD. This test is true if
PDR[28-31] is all ones. Note that, for this micro-order, PDR is considered a 4-bit
counter. After testing, the counter is incremented by one. Note that CNT4 increments the
entire eight-bit counter. (This micro-order is equivalent to incrementing the counter and
testing PDR[28-31l for 0.)

Carry

CRY

Polarity=O Value=3A

Test the carry-out from the ALD. For wide tests (FLAG3=l), this test is true if
CRYO=l~ for narrow tests (FLAG3=0), if CRY16=1.

Test the ALU Sign Bit

FSGN

.Polarity=O Value=3B

This test is true if the ALD output's sign bit equals one (i.e., if the value is
negative). For wide tests (FLAG3=l), the sign bit is FO~ for narrow tests (FLAG3=0), the
sign bit is F16.

Integer ALU Tests



3-18

Overflow

OVF

Polarity=O Value=3C

This test is true if there is overflow from an ALU operation. For wide tests
(FLAG3=1), the overflow is from a 32-bit result~ for narrow tests (FLAG3=O), from a
16-bit result.

Test for ALU Result Equal to Zero

FZR

Polarity=l Value=3D

This test is true if the F Bus (the ALU output) equals zero. For wide tests (FLAG3 = 1),
the test is for 32 bits (F[O-31])~ for narrow tests (FLAG3=O), 16 bits (F[I6-31]).

Signed Greater Than or Equal

SGE

Polarity=l Value=3E

This test is true if the signed value on the S input is greater than or equal to the signed
value on the R input. For this test to work correctly, on the previous cycle you must subtract
(IOP:CSR) the quantities you wish to compare.

For wide tests (FLAG3=1), SGE tests all 32 bits~ for narrow tests (FLAG3=O), SGE
tests only the least-significant 16 bits.

CARR Y Equal to One

CRRY

Polarity=l Value=3F

Test for CARRY equal to one this cycle.

Floating-Point Tests

Floating-point tests in the TSEL field compare the magnitudes of two numbers or check for
mantissa or exponent carry-out. A compare test is based on the compare status bits in the
STATE register. These bits are set by the RAND :FLT:SCNT:CMP micro-order. The signed
magnitude tests are based on the values in SA and SB. In order for the comparison tests to
work, the CMP micro-order must be executed and, if necessary, RAND:FLT:SGN:LAB must
be executed at least two cycles before the microinstruction containing the test.

Floating-Point Tests



3-19

A Equals B, Unsigned

UAEB

Polarity=O Value=27

This test is true if the absolute values of the numbers on the FA and FB buses were
equal when CMP was executed.

A Less Than B, Unsigned

UALB

Polarity=O Value=26

This test is true if the absolute value of the number on the FA Bus was less than the
absolute value of the number on the FB Bus when CMP was executed.

A Greater Than B, Unsigned

UAGB

Polarity=O Value=25

This test is true if the absolute value of the number on the FA Bus was greater than the
absolute value of the number on the FB Bus when CMP was executed.

A Equals B, Signed

SAEB

Polarity = 1 Value = 24

This test is true if the signed value of the number on the FA Bus was equal to the
signed value of the number on the FB Bus.

A Less Than B, Signed

SALB

Polarity=O Value=23

This test is true if the signed value of the number on the FA Bus was less than the
signed value of the number on the FB Bus.

Floating-Point Tests



3-20

A Greater Than B, Signed

SAGB

Polarity=O Value=22

This test is true if the signed value of the number on the FA Bus was greater than the
signed value of the number on the FB Bus.

Mantissa Carry-out

FCRY

Polarity=O Value=21

This test is true if there was a carry-out from the mantissa ALD.

Exponent Carry-out

ECRY

Polarity=O Value=20

This test is true if there was a carry-out from the exponent ALD.

N'AC:UCOP - Unconditional OPcode

The DCOP field controls unconditional actions by the microsequencer, i.e., actions that occur
without regard to any test condition. Table 3-6 summarizes the micro-orders in the DCOP
field.

NAC:UCOP-Unconditional OPcode



3-21

Table 3-6. Unconditional OP MJcroorders

Mnemonic Value uPC uStack Description

LEAP 0 AA - 14-bit jump

LSR 1 AA PSH .+1 Leap and save return

DSPA 2 ADA - 14-bit dispatch

DSPR 3 ADA PSH .+1 Dispatch and save return

LPOP 4 AA POP Leap and pop TOS

PUSH 5 .+1 PSH AA Push a 14-bit address

PCPD 6 AA PSH CPD Pu~h stack state from CPD
bus

TPSH 7 TOS PSH AA Go to TOS and push
address

The NAC:ADDRESS field for VCOP micro-orders is 14 bits long, so that these
micro-orders can address all of WCS.

Fourteen-bit Jump

LEAP

o

LEAP transfers control to NAC:ADDRESS.

Fourteen-bit Jump and Save

LSR

1

LSR pushes the uPC + 1 onto the microstack and transfers control to NAC:ADDRESS.

Fourteen-bit Dispatch

DSPA

2

DSPA constructs an address using bits from the dispatch register or the ATV. The DSR
field must be coded with DSPA to specify how the address is constructed.

NAC:UCOP-Unconditional OPcode



3-22

Fourteen-bit Dispatch and Save Return

DSPR

3

DSPR constructs an address using bits from the dispatch register or the ATU. In
addition, it pushes uPC + 1 onto the stack for a future return. The DSR field must be coded
with DSPA to specify how the address is constructed.

Jump and Pop the Microstack

LPOP

4

LPOP transfers control to NAC:ADDRESS and pops the microstack. Note that the
current top of stack (TOS) value is lost.

Push a Fourteen-bit Address

PUSH

5

PUSH transfers control to the following instruction (uPC + 1) and pushes
NAC:ADDRESS onto the microstack.

Push State from CPD

PCPD

6

PCPD transfers control to NAC:ADDRESS and pushes the most significant bits from the
CPD Bus (CPD[O-15]-) onto the microstack. This micro-order can be used to store state that
can be recovered at some later time by popping the stack.

Go to TOS and Push a Fourteen-bit Address

TPSH

7

TPSH transfers control to the address at the top of the microstack and pushes
NAC:ADDRESS onto the microstack.

NAC:UCOP-Unconditional OPcode



3-23

N"AC:DSR-Dispatch Address Source

The DSR portion of the NAC field controls the cross-bar network and the dispatch
multiplexer. It is used by microinstructions that specify dispatch addressing, specifically, the
NAC field micro-orders COP:CDSP, UCOP:DSPA, and UCOP:DSPR.

Table 3-7. Dispatch Address Source

Mnemonic Value Description

A 0 ATU dispatch:
AA[0-9],0,ATD[0-1 ],0

F Four-bit dispatch:
AA[0-9],DSP[4-7]

E 3 Eight-bit dispatch:
AA[0-5],DSP[0-7]

The dispatch register is loaded from the CPD Bus. Using the dispatch register, the
microprogram can branch on the basis of some external value (e.g., a value from a
macroinstruction or from an I/O controller). The cross-bar network can also construct an
address with two bits supplied by the Address Translation Unit.

A TU Dispatch

A

o

The A micro-order constructs an address using the most significant ten bits from the AA
Bus and two bits supplied by the ATU over the ATD Bus. The resulting address is:

AA [ 0- 9] ) 0 ) ATD [ 0-1 ] ) 0

ATU addresses are used to direct page-table searches for the Long Address Translation
(LAT) routine.

Four-bit Dispatch

F

1

The F micro-order constructs an address with the ten most significant bits from the AA
Bus and the four least significant bits from the dispatch register. The resulting address is:

AA[O-9] )DSP[4-7]

You can use the four-bit dispatch for such things as quick access to a table (with the AA
address as the table base and DSP as an index).

NAC:DSR -Dispatch Address Source



3-24

Eight-bit Dispatch

E

3

The E micro-order is similar to F, except that it uses eight bits from the dispatch register
and only six bits from the AA Bus. The resulting address is

AA[O-5]}DSP[O-7]

The additional bits allow dispatching to a greater range of addresses (e.g., for larger tables).

Address Generator Micro-orders

The Address Generator portion of the microword contains the following fields:

• AA -specifies the A output of the register file.

• AB-specifies the B output of the register file and also the input register for the register
file.

• AGB-specifies the sources for the AGB Bus.

• AOP-specifies the operation for the AG ALU.

• AL-specifies the source for loading the register file.

AA and AD - The Register File Address Fields

The AA and AB fields designate the sources for the register file's A and B output ports. In
addition, the AB field designates the input register. The following micro-orders can appear in
both the AA and AB fields.

Macroinstruction Accumulator 0

AGO

o

This micro-order specifies the first register in the register file. At IPOP, this register must
contain the same value as Accumulator 0 in the Integer ALU register file.

AA and AD - The Register File Address Fields



3-25

Macroinstruction Accumulator 1

AGI

1

This micro-order specifies the second register in the register file. At IPOP, this register
must contain the same value as Accumulator 1 in the Integer ALU register file.

Macroinstruction Accumulator 2

AG2

2

This micro-order specifies the third register in the register file. At IPOP, this register
must contain the same value as Accumulator 2 in the Integer ALU register file.

Macroinstruction Accumulator 3

AG3

3

This micro-order specifies the fourth register in the register file. At IPOP, this register
must contain the same value as Accumulator 3 in the Integer ALU register file.

Wide Stack Pointer

SP

4

The wide stack pointer for the current ring (page-zero-Iocation 1216) is copied into this
register. By convention, these copies are not always identical. The register contains the valid
copy.

Constant 1

ONE

5

This register always contains a 1. The microprogrammer can use it to increment or
decrement values.

AA and AD - The Register File Address Fields



3-26

Constant 2

TWO

6

This register always contains a 2. The microprogrammer can use it to increment or
decrement a value by 2. For instance, the 2 can be used to increment the wide stack pointer
for WPSH.

Reserved Register for Long Address Translation

LAT

7

This register is used by the LAT routine, and must not be used for general
microprogramming.

General Register 0

ARO

8

The microprogrammer may use this register for general purposes. It has no assigned
meaning.

General Register 1

ARl

9

The microprogrammer may use this register for general purposes. It has no assigned
meaning.

General Register 2

AR2

A

The microprogrammer may use this register for general purposes. It has no assigned
meaning.

AA and AD - The Register File Address Fields



3-27

General Register 3

AR3

B

The microprogrammer may use this register for general purposes. It has no assigned
meaning.

General Register 4

AR4

C

The microprogrammer may use this register for general purposes. It has no assigned
meaning.

General Register 5

AR5

D

The microprogrammer may use this register for general purposes. It has no assigned
meaning.

Register Addressed by ACSR

SRC

E

This micro-order takes the address for the AG register file from the Accumulator Source
(ACSR) address register of the integer ALU. Thus, for this micro-order, the AG register will
correspond to the ACSR register. For example, if the ACSR register holds 1, it addresses
macroaccumulator 1 and the macroaccumulator's copy in register 1 of the AG register file.

Register Addressed by ACDR

DES

F

This micro-order takes the address for the AG register file from the Accumulator
Destination (ACDR) address register of the integer ALU. Thus, for this micro-order, the AG
register will correspond to the ACDR register. For example, if the ACDR register holds 1, it
addresses macroaccumulator 1 and the macroaccumulator's copy in register 1 of the AG
register file.

AA and AD - The Register File Address Fields



3-28

AGB - The Address Generator Bus Field

The AGB field controls the sources to the B input of the AG ALD. The following
micro-orders are used in this field:

Displacement Register

D

o

The Instruction Processor (IP) Displacement Register is chosen as the source for the AGB
Bus. The IP controls the loading of this register from the DISP Bus. Microcode should use this
register only to perform EFA calculations~ its contents are indeterminant to a microprogram.
The D micro-order must always be used in the AGB field at IPOP.

Register File B Port

B

1

The B output port of the AG register file sources the AGB Bus. The B port address comes
from the AB field of the microinstruction.

Constant Register

C

2

The constant register sources the AGB Bus. This register is loaded from the CONSTANT
field of the microinstruction. Note that if the CONSTANT field is being used for floating-point
operations, the value in the constant register may be meaningless.

Last Logical Address Register

L

3

The last Logical Address (LA) register sources the AGB Bus. The last LA register is
loaded only on memory starts, except during LAT or Cache Block Crossings (CBXs). CBXs
are performed by incrementing the last LA register to access the second half of the double
word.

AGB-The Address Generator Bus Field



3-29

AOP-Address Generator ALU Operation Field

The AOP field controls the actions of the AG ALU. The ALU is used for address calculations.
The following micro-orders are available for this field:

B minus A

SUB

o

Subtract the A input to the AG ALU from the B input. This operation has a carry-in of 1
(2's complement subtraction).

A plus B

ADD

1

Add the A input of the AG ALU to the B input. This operation has no carry-in.

Pass AGB Bus

PSB

2

Pass the B input (the AGB Bus) through the AG ALU unchanged. The A input is ignored.

Effective Address Calculation

EFA

3

Try to perform the next Effective Address (EFA) calculation. Note that this micro-order
uses the index bits of the next macroinstruction to calculate the A-port address for the AG
register file and to determine the AG ALU function. Therefore, the microprogrammer cannot
use the AA field in an IPOP cycle. This micro-order must be coded during IPOP.

AL --Address Generator Register Loading

The AL field of the microinstruction determines which source is used when the AG register file
is loaded. Note that the address for this file is always the B address, specified in the AB field.
The following micro-orders can be coded in the AL field:

AL-Address Generator Register Loading



3-30

No Load

N

o

Do not load the AG register file on this microinstruction.

Load from CPM

M

1

Load the AG register file from the CPM Bus.

Loadfrom AY

Y

2

Load the AG register file from the AY Bus.

Load on True

C

3

Load the AG register file from the CPM Bus if the test coded on this cycle is true.

Memory Control Micro-orders

The memory control portion of the microword contains the following fields:

• MEMS-starts a main memory reference.

• MEMC-completes a main memory reference.

Memory Control Micro-orders



3-31

ME]\1S-Memory Start

The following micro-orders start memory prior to a transfer of data to or from the CPU. The
Address Generator forms the reference addresses during the same microinstruction as the
memory start. The type of start determines how the logical address is formed:

Start Type

Word or double word

Byte

Address Formation

LA[O-31] = AGB[O],AY[1-31]

LA[O-31] = AY[31 l,AY[O-30]

If FLAGI =0 (narrow addressing), then LA[l-3] = CRE[1-3] and LA[4-16] are zeroed.

No Operation

N

o

No operation takes place.

Read a Word

RW

1

Start a memory cycle to read a word.

Read a Double Word

RD

2

Start a memory cycle to read a double word.

Read a Byte

RB

3

Start a memory cycle to read a byte.

MEMS-Memory Start



3-32

Machine State Determined Start

S@

4

Start memory according to the information from the current macroinstruction (read/write,
byte/word/double word, and indirection). In a LAT routine, start memory according to the last
non-LAT memory start. S@ must be coded during IPOP.

Write a Word

WW

5

Start a memory cycle to write or read/modify a word.

Write a Double Word

WD

6

Start a memory cycle to write or read/modify a double word.

Write a Byte

WB

7

Start a memory cycle to write or read/modify a byte. For byte writes, only the integer ALU
buses IA and IY correctly align themselves for the cache. Other sources must be aligned by
microcode: for even addresses, CPM[I6-23]~ for odd addresses CPM[24-31]. The cache looks at
only the specified bits on the CPM Bus.

MEMC -Memory Complete

MEMC micro-orders complete memory transfers that were started by micro-orders in the
MEMS field.

MEMC -Memory Complete



3-33

No Operation

N

o

No operation takes place.

Read or Read/Modify Complete

R

1

Complete a read operation started on a previous cycle by a micro-order in the MEMS field.
An R complete checks read protection. You perform a read/modify operation by coding a write
start followed by a read complete. Memory will remain started until you code a write complete.

Write Complete

W

2

Complete a write operation started on a previous cycle by a micro-order in the MEMS field.
If possible, avoid coding W in the same microinstruction with a read memory start, because
memory will cause a delay in the microinstruction cycle. Never code W with a read start during
IPOP.

Execute Complete

x

2

Complete a read-word memory start (MEMS:RW) to the Instruction Processor (IP).
Execute protection will be checked if the start was accompanied by the
RAND:ATU:ATUO:<IPST or ICAT> micro-orders.

Abort

A

3

Abort a memory start. An abort always inhibits protection, except for indirection depth.
Coding A enables the ATU diagnostic register. This is described in Chapter 2 under "ATU
Dia~\nostic Register."

MEMC-Memory Complete



3-34

Bus Control Micro-orders

The Bus Control portion of the microword contains the following fields:

• CPMS-specifies the source for the CPM Bus.

• CPDS-specifies the source for the CPD Bus.

CPMS -CPM Bus Sources

The CPMS field controls the sources of the CPM Bus.

No Op

N

o

The CPM Bus is not driven.

Main Memory

MM

1

Main memory (the system cache) drives the CPM Bus. See the MEMS and MEMC
micro-order fields.

Address Generator

AG

2

The AY Bus of the Address Generator drives the CPM Bus.

ALU IY Bus

IY

3

The IY Bus of the integer ALU drives the CPM Bus. The IY Bus carries data from the
ALU, the hex shifter, and the edit RAMs.

CPMS -CPM Bus Sources



3-35

ALU A Bus

IA

4

The A Bus of the integer ALU drives the CPM Bus. The A Bus is the A output of the
integer ALU register file.

Most-Significant Floating-Point Word

HF

5

The most-significant bits from the floating-point register file (FA[0-31]) source the CPM
Bus.

Least-Significant Floating-Point Word

LF

6

The least-significant bits from the floating-point register file (FA[32-63]) source the CPM
Bus.

CPDS -CPD Bus Sources

The CPD Bus is the major bus connecting the various boards of the MV110000 CPU. Most
data that is internal to the CPU travels over this bus, and the 110 controller is connected to
this bus.

The PDR register is loaded whenever the CPD Bus is sourced (i.e., any micro-order
other than N). The only exceptions to this are during a LAT routine and when
RAND:ATU:ATUO:NPDR is coded.

}.{ote: Sources designated as "slow" cannot be used for arithmetic or during IPOP. These
sourCies start and stop driving the CPD Bus later than normal sources. A normal source
should not be coded in a cycle immediately following a slow source. If this were done, the
normal source signals would be garbled by the signals from the slow source.

CPDS -CPD Bus Sources



3-36

NoOp

N

o

No source drives the CPD Bus. The bus contains zeros and the PDR register is not loaded.

ALU IY Bus

IY

1

The IY Bus of the integer ALU drives the CPD Bus.

Transfer Register

TRG

2

The transfer register (TREG) in the integer ALU sources the CPD Bus. TREG is loaded
from the CPM Bus. TREG drives the CPD Bus fast enough so that it can source the integer
ALU. The result from the ALU can be driven to the Address Generator on the CPM Bus
during the same microinstruction cycle.

Microsequencer State

USS

3

USS causes the microsequencer to drive its state onto the CPD Bus. This state consists of
the current top of the stack (16 bits), the flags (8 bits), and the dispatch register (8 bits), as
follows:

• TOS[O-15] goes to CPD[O-15]-

• FLG[O-7] goes to CPD[l6-23]-

• DSP[O-7] goes to CPD[24-31l-

The top of stack data and the flags are read from CPD with their true values and written
back to the bus in inverted form. The dispatch register bits are read inverted and written true.
For state save and restore, data should be inverted before writing it to memory.

CPDS -CPD Bus Sources



3-37

Next Sequential PC

PCN

4

The value on the CPO Bus is the currently executing PC plus the length of the currently
executing macroinstruction. This micro-order only makes setup to the POR register.

Executing PC

PCX

5

The value on the CPO Bus is the currently executing PC. This micro-order only makes
setup to the POR register.

Next PC

PC

6

The value on the CPD Bus is the next PC. This value will be identical to PCN if there is no
IPST; otherwise, the value will be the IPST value (see RANO:ATV:ATVO:IPST). This
micro-order only makes setup to the POR register.

Instruction Processor State

IPS

7

The Instruction Processor (IP) state sources the CPO Bus, as follows.

CPD Bits

28

29

30-31

This is a slow source.

IP State Bits

XCTFLG

ION

""LPCX[O-1J

Description

Bit indicating that the current
macroinstruction was the result of an
XCT instruction

Master interrupt mask bit

Length of currently executing instruction

CPDS -CPD Bus Sources



3-38

I/O Controller Data Register

IOC

8

The data register from the I/O controller sources the CPO Bus. This micro-order transfers
data from peripherals and the I/O controller directly to the CPU. This is a slow source. See the
I/O Protocols section of Chapter 2.

A TU Diagnostic Register

ATO

9

The ATU diagnostic register sources the CPO Bus. See the ATU Diagnostic Register
section of Chapter 2. This is a slow source.

Logical Address Register

LAR

A

The Logical Address Register (LAR) sources the CPO Bus. LAR drives the bus fast
enough so that it can source the integer ALU. The result from the ALU can drive the CPM Bus
to the Address Generator during the same microinstruction cycle.

ATU State

ATS

B

The value on the CPO Bus is the Address Translation Unit (ATU) State. See the ATU
state section of Chapter 2 and RANO:ATU:ATUO:LATS. This is a slow source.

SCP Instruction Register

CIR

C

The System Control Processor's instruction register sources the CPO Bus. This is a slow
source.

CPDS -CPD Bus Sources



3-39

SCP Data Register

CDR

D

The System Control Processor's data register sources the CPD Bus. This is a slow source.

Address Generator

AGA

E

The Address Generator's register..file A-port sources the CPD Bus. This micro-order cannot
be used during IPOP.

Zero

ZER

F

Zeros are driven onto the CPD Bus. Unlike N, this micro-order loads PDR.

RAN"D -Random Micro-orders

The RAND field contains general micro-orders, as well as additional micro-orders for the IALU,
the FPU, and the ATU. Micro-orders in the RAND field occur in four possible modes. The
mode is specified by the first subfield (RM) in the RAND field. Table 3-8 shows the
micro·,orders in the RM field:

Table 3-8. RM Field Micro-orders

Mnemonic Value RAND Mode

GN 0 General (GEN)

AT Address Translation Unit
(ATU)

XC 2 CIB=O Fixed-point (FIX), Carry-In
Base is CARRY

XZ 2 CIB=1 Fixed-point (FIX), Carry-In
Base is zero

FL 3 Floating point (FLT)

RAND - Random Micro-orders



3-40

Note that FIX mode is invoked by either the XC or XZ micro-orders. These micro-orders also
set the CIB field.

Each RAND mode has a corresponding set of subfields. The formats for each mode are
shown in Figure 3-3.

RM Corresponding
Field Format

~
REGO REG1 SPAD

I2 (00) 5 2 2

QJ;J ATUO ATU1 SPAD

I2 (01) 5 2 2

[B;] CrB COVS

I
~OAD I SPAD

I2 (1 0) 1 4 2

[B;] I ~GN I ~XP I
SCNT

I2 (11) 3

Figure 3-3. RAND Mode Formats

RAN"D:GEN -General Random Micro-orders

The RAND:GEN portion of the microword contains the following fields:

II REGO-specifies general and ACS and ACD operations.

II REG1-specifies register control operations.

II SPAD-specifies scratch pad operations.

RAND:GEN :REGO -General!ACSRIACDR Micro-orders

The RAND:GEN:REGO field has micro-orders for general operations and for control of the
ACSR and ACDR registers. The ACSR and ACDR micro-orders must be coded at least one
cycle before the registers are used for addressing.

No Operation

N

o

No operation is performed.

RAND:GEN :REGO -General!ACSRIACDR Micro-orders



3-41

Write Console Data

CD\V

1

This micro-order gates the least-significant sixteen bits of the CPD Bus to the System
Control Processor: CPD[l6-31l goes to CDR[O-15].

Increment ACSR

INCS

4

INCS increments ACSR[2-3] by one. Note that ACSR[O-l] are unchanged.

Decrement ACSR

DECS

5

DECS decrements ACSR[2-3] by 1. Note that ACSR[O-l] are unchanged.

Load ACSR

LDAS

6

The Accumulator Source Register is loaded from the ID Bus (ID [28-31]) .

Force ACSR

FRCS

7

The Accumulator Source Register is set to 'E' (hexadecimal).

RAND:GEN :REGO -General!ACSR/ACDR Micro-orders



3-42

Increment ACDR

INCD

8

INCD increments ACDR[2-3] by one. Note that ACDR[O-I] are unchanged.

Decrement ACDR

DEeD

9

DECD decrements ACDR[2-3] by one. Note that ACDR[O-I] are unchanged.

Load ACDR

LDAD

A

The Accumulator Destination Register is loaded from ID [24-27],

Force ACDR

FReD

B

The Accumulator Destination Register is set to 'F' (hexadecimal).

Force CARRY Bit

FCY

c

This micro-order forces the CARRY bit onto the CPM Bus when the A output of the
integer register file sources that bus. CARRY goes to CPMO if FLAG1= 1~ to CPM16 if
FLAGl=O.

RAND:GEN :REGO -General/ACSR/ACDR Micro-orders



3-43

Enable Wide Skips

WSKP

D

This micro-order enables wide C32-bit) skips. The skip itself is dependent on test conditions
coded in the CNST field. The tests are coded in the same way as those in the TSEL field. Note
that they can be wide or narrow, depending on FLAG3. WSKP and the test conditions can be
coded only at IPOP and cannot be coded with a memory complete. The table below lists the test
cond:itions.

Mnemonic

CRY

NCRY

SGE

o

2

Value Description

Test the carry-out from the integer ALU
(CRYO or CR1 6 for FLAG3 = 1 or
0). The test is true if CRY # = 1.

Test the carry-out from the integer ALU
(CRYO or CR16 for FLAG3 = 1 or
0). The test is true if CRY # = O.

Compare the signed S input to the
signed R input (bits 0-31 or 16-31 for
FLAG3 = 1 or 0). The test is true for S
> = R. For this test to work you must
perform a subtract on the previous cycle.

NSGE

FZR

NFZR

3

4

5

Compare the signed S input to the
signed R input (bits 0-31 or 16-31 for
FLAG3 = 1 or 0). The test is true for S
< R. For this test to work you must
perform a subtract on the previous cycle.

The test is true if the integer ALU output
(F) equals zero (F[0-31] or F[16-31] for
FLAG3 = 1 or 0).

The test is true if the integer ALU output
(F) does not equal zero (F[0-31l or
F[16-31] for FLAG3 = 1 or 0).

RAND:GEN :REGO -General!ACSRIACDR Micro-orders



3-44

Load ACSR and A CDR

LDSD

E

ACDR[O-3] are loaded from ID[24-27] and ACDS[O-3] are loaded from ID[28-311.

Force ACSR and ACDR

FRSD

F

The ACSR is set to 'E' (hexadecimal) and the ACDR is set to 'F' (hexadecimal).

Modify Flag Set 0

MFSO

10

MFSO can modify flags 0, 1, 2, and 3, according to the coding in the CNST field.

Modify Flag Set 1

MFSI

11

MFSI can modify flags 4, 5, 6, and 7, according to the coding in the CNST field.

CNST Field with MFSO alld MFSI

For the REGO micro-orders MFSO and MFS1, two bits in the CNST field specify what is to
be done to each flag. Table 3-9 shows how these two bits are coded.

Table 3-9. CNST Microorders for RAND MFSO and MFS1

N

S

Mnemonic Value Description

o No operation to flag

Set flag to 1

C

T

2

3

Clear flag to 0

Toggle flag

RAND:GEN :REGO -General/ACSRIACDR Micro-orders



3-45

For llhese micro-orders, the microassembler codes four micro-orders in the CNST field, rather
than one. For example, to set flags 0-3 to 1,0,1,0, you would code:

The assembler would code the micro-order MFSO in RAND:GEN:REGO, and the micro-orders
S,C,S,C in the CNST field:

Bit 0 2 3 4 5 6 7

CNST:

I MFLGO: I MFLG1: I MFLG2: I MFLG3: I
S C S C

MFLGO, MFLG1, MFLG2 and MFLG3 are two-bit subfields of CNST that correspond to the
flags of the specified set.

Accumulate Test Results into Flags 4 and 6

AF46

12

AF46 puts test results into Flag 4 and Flag 6. Before the results are stored, they can be
manipulated by codes in the CNST field.

Accumulate Test Results into Flags 5 and 7

AF57

13

AF57 puts test results into Flag 5 and Flag 7. Before the results are stored, they can be
manipulated by codes in the CNST field.

CNST Field with Micro-orders AF46 and AF57

For the REGO micro-orders AF46 and AF57, two 3-bit sections of the CNST field are
used, one for each flag to be manipulated. Table 1 shows how these bits are coded.

RAND:GEN:REGO-GenerallACSRIAcnR Micro-orders



3-46

Table 3-10. CNST Microorders for RAND AF46 and AF57

Mnemonic Value Description

N 0 No operation to flag

X XOR test to flag

S 2 Set flag to 1

A 3 AND test to flag

C 4 Clear flag to 0

0 5 OR test to flag

T 6 Toggle flag

L 7 Load test into flag

For these micro-orders the microassembler codes two micro-orders in the CNST field, rather
than one. For example, to load a test result into flag 4 and invert flag 6 if the test result is 1,
you would code:

The assembler would code the micro-order L in the AFLGO subfield of CNST and X in the
AFLG1 subfield.

Bit 0 2 3 4 5 6 7

CNST:

AFLGO:
L

Load Flags From CPD

LFLG

14

AFLG1 :
X

LFLG loads the flags from CPD[I6-23] (inverted). This micro-order does not load PDR.

Skip on False Test

SKFT

15

Skip over the next word in the instruction stream if the test selected this cycle is false. The
microroutine must IPOP the next cycle in order for the skip to operate properly.

RAND:GEN :REGO -General/ACSR/ACDR Micro-orders



3-47

Even Parity

EPAR

16

Select even parity for WCS next cycle.

Load SPAR from Constant Register

SPCN

17

Designate CON[0-7] , which contains the value in the CNST field of the micro-order, for
loading SPAR.

Load Least Significant SPAR bits from IY Bus

SPY4

18

Designate the IY Bus for loading SPAR. SPAR[4-7] come from IY[28-31L SPAR[0-3]
remain unchanged.

SPCN and SPY4-SPAD Micro-orders

The scratch pad address register (SPAR) is one possible address source for the scratch pad.
By dlefault, SPAR is loaded from IY[24-31l; however, the SPCN and SPY4 micro-orders
override this source. Note that these orders only select the input to SPAR; the micro-order
RAND:<GEN,ATU,FIX>:SPAD:LS must be coded at the same time in order to load SPAR.
These orders must not be coded at IPOP. For WSKBO and WSKBZ, the hardware generates an
address that indexes the proper bit mask in the scratch pad (see Appendix H).

No Load PDR

NPDR

IE

Normally, the PDR is loaded whenever the CPD Bus is active. This micro-order prevents
that loading.

RAND:GEN :REGO -General!ACSRIACDR Micro-orders



3-48

Extended Clock

XTND

IF

This micro-order extends the microinstruction cycle for an additional cycle.

RAND:GEN:REGI-Register Load Operations

No Op

N

o

No operation takes place.

Append CRE

AC

1

Append the Current Ring of Execution (CRE) bits to the logical address. CRE[I-3] goes to
LA[1-3].

Load the Dispatch Register

LD

2

LD loads the dispatch register from CPD [24-31]. The register must be loaded at least one
microcycle before it is used.

Load Transfer Register

LT

3

Load the transfer register (TREG) from the CPM Bus: CPM[O-31] go to TREG[O-31].

RAND:GEN:REGI-Register Load Operations



3-49

RAND:GEN :SPAD -Scratch Pad Input Control

The SPAD field RAND micro-orders control the scratch pad, and the micro-orders in the field
have the same meaning for the GEN, ATU, and FIX modes. The scratch pad is read when it is
enabled onto the ID Bus by the micro-orders ID:SS and ID:SC. The scratch pad is loaded from
the IY Bus or the CPM Bus, as selected by the IL field. It cannot be read and written on the
same cycle.

No Operation

N

o

The scratch pad is not written to in this cycle~ however, it may be read.

SPAR Addresses SPAD

WS

1

Load data into the scratch pad from the IY or CPM Bus, as selected by the IL field. The
scratch pad address register (SPAR) addresses the scratch pad.

CON Addresses SPAD

WC

2

Load data into the scratch pad from the IY or CPM Bus, as selected by the IL field. The
CON register (which contains the value in the CNST field) addresses the scratch pad.

Load SPAR

LS

3

Load data into the scratch pad address register (SPAR). The default input for SPAR is
IY[24-311. Other inputs are possible using micro-orders in the RAND:GEN:REGO field.

RAND:GEN :SPAD -Scratch Pad Input Control



3-50

RAND:ATU -ATU Random Micro-orders

Micro-orders in the RAND:ATU field are the principal micro-orders for the Address Translation
Unit. The RAND:ATU portion of the microword contains the following fields:

• A TUO-specifies ATU operations.

• ATUI-specifies ATU operations.

• SPAD-specifies scratch pad operations.

RAND:ATU :ATUO -ATU Operations

No Op

N

o

No operation takes place.

Load the eRE and ESR Registers

LCRE

4

The Current Ring of Execution (CRE) register and the Effective Source Register (ESR) are
loaded from the logical address bus: LA[l-3] goes to CRE[l-3] and ESR[l-3l.

Start Memory in Mode 0

CMO

5

This micro-order is used for certain types of main memory references: cache-block-crossing
reads, cache flushes, and XCT instructions. All of these references deal directly with the system
cache and its functioning.

Cache Block Crossing

The MV110000 main memory system is organized into blocks of four 32-bit double
words. When a double-word (32-bit) read crosses a block boundary in the cache, there must be
two separate memory reads -one for each 16-bit word in the reference. To code this memory
start, use RAND:ATU:ATUO:CMO along with MEMS:RW. The cache will assemble the two
words into a double word and source it to the CPM Bus when the memory complete is coded.
Note that no special memory start is necessary for cache-block-crossing writes.

RAND:ATV:ATVO -ATV Operations



3-51

CfA!che Flush

Normally, the system cache sends data back to main memory only when it is necessary to
overwrite a block in the cache. However, it is possible to force the cache to write a block back to
main memory arbitrarily. This ability is used for main memory diagnosis: you can move data out
of a single main memory block, store it temporarily, and move it back to main memory without
accessing any other blocks.

To move data this way, you must code a MEMS:RD micro-order along with CMO, and
provide a block address, i.e., one that ends in three zeros. The addressed block will be read out
from the cache and subsequently written back to main memory. In the fourth cycle following the
memory start, you must code a MEMC:R micro-order~ no other MEMC micro-orders are
allowed.

XCT

In order to implement the XCT instruction, the opcode to be executed is sent to the
Instruction Processor (IP) via the system cache. The following sequence of operations is used
for XCT:

1) Code MEMS:WW and ATU:ATUO:CMO in the same microinstruction.

2) Source the opcode onto the CPM Bus (from an accumulator in the integer ALU) and at
the same time code a memory abort (MEMC:A).

3) ~(ait four cycles and IPOP.

Restore ATU State

LATS

6

This micro-order restores the state for the Address Translation Unit. The Effective Source
Ring (ESR) register and the last memory start register ("CPWRITE@, "CPMODE@[O-2]) are
restored from the Logical Address Bus (LA[l-3] and LA[20-23]). Table 3-11 shows the ATU
state that is restored.

Table 3-11. ATU Restored State

Bits Name Description

1-3 ESR[1-3] The Effective Source Ring

20 ""CPWRITE@ Indicates that the last
non-LAT start was a write.

21-23 ""CPMODE@ [0-2] The mode bits for the last
non-LAT start.

RAND:ATU:ATUO-ATU Operations



3-52

The following table shows the possible values for the CPMODE state field:

Table 3-12. CP Mode Code

Code Meaning

0 Word reference (16
bits)

Low byte reference

2 Double word
reference (32 bits)

3 High byte reference

4 Assemble

5 Send execute data

6 Flush cache block

7 No operation

Write SBR

WSBR

7

This micro-order writes the SBR addressed by bits 1-3 of the LA Bus from the CPD Bus
(inverted) .

Address Page Table Entry with SBR

RSBR

8

This micro-order gates the address of a page table entry (PTE) onto the CPU Physical
Address (CPA) Bus. The PTE address is formed from the address portion of the Segment Base
Register (SBR) addressed by LAR[1-3] and either LAR[4·12],O or LAR[13-211,O~ the least
significant bit of the PTE address is always zero because PTEs are aligned on 32-bit boundaries.

The number of page-table levels determines the specific bits from the LA Bus. Hardware
makes this determination from bit 1 of the SBR and automatically inserts the correct bits into
the PTE address.

For a one-level page table, the memory reference with this micro-order returns the physical
page address corresponding to the current logical page address. The OPTA micro··order can
combine the physical page address with the word-in-page offset (LA[22-31]) to produce a correct
memory reference.

RAND:ATU:ATUO -ATU Operations



3-53

For a two-level page table reference, the memory returns the address of the second page
table" and you must use the LPTA micro-order to get the physical page address.

Low-Order Page Table Addresses Memory

LPTA

9

This micro-order is used to address the second page table after the address from the first
page table has been returned. The physical page address of the first page table is returned on
CPD, and is combined with bits 13-21 of the Logical Address Register (LAR). The combination
of CPD[l8-311,LAR[13-2l],O, is sourced to the CPA Bus for a memory reference. The memory
returns the physical page address that corresponds to the logical page address. The OPTA
micro-order combines this page address with the word-in-page offset (LA[22-31]) to form a
physical address.

Load the Logical Address Register and Physical Page Address Register

LLAR

A

This micro-order loads the Logical Address Register (LAR) from the logical address Bus
and PPAR[8-21] from CPA[8-2l]

Load the Modified/Referenced RAM

WRRM

B

This micro-order sends data from CPD [26-27] to the modified and referenced bits
addressed by the CPA Bus. CPD26 goes to the mod bit and CPD27 to the reference bit. The
bits are addressed by the page address that the ATU gates onto the CPA Bus (CPA[8-21]).
This address can be generated by either the address translation cache or the page table entry
logic.

Read And Reset Reference Bits

RSRF

D

This RSRF micro-order will read and reset to zero the reference bits for eight pages
simultaneously. The following prodedure must be followed to use this micro-order correctly:

1) Place the address for the first page in the eight-page block into the Physical Page Address
Register (PPAR). This address must end in three zeros. The address is usually loaded by
turning off the ATU, sourcing the physical address onto the LA Bus, and coding the ATU
random LLAR.

RAND:ATU:ATUO-ATU Operations



3-54

2) Code RSRF. This sources the reference bits to the CPD Bus. Note that the bits will be
ORed with any other data on the CPD Bus. The only possible destination for the reference
bits is the PDR register in the integer ALU~ there is not enough set-up time for any other
registers on the CPD Bus.

3) Get the reference bits from the PDR[24-31]. Bit 24 is the reference bit for the page whose
address ends in three zeros. The ATU is now on. ATUO:AOFF must be coded if the ATU
should not be on.

Purge the Address Translation Cache

PRGA

E

This micro-order resets all the bits in the validity RAM for the address translation cache. In
effect, it returns the cache to an empty state.

Page Table Addresses Memory

OPTA

F

This micro-order takes a page address from a Page Table Entry (PTE) and uses it to address
a memory location. The page address itself comes from memory as a result of an RSBR or
LPTA micro-order. The full address for memory is assembled from the PTE page address and
the logical address's page offset. The page address is sourced to the ATU on the CPD Bus~ the
logical address is available on the LA Bus. The bits are sourced to the CPA Bus as follows:

CPA[8-31] = CPD[18-31],LABUF[22-31]

If the test condition in this microinstruction is true, then the ATU cache is also loaded. The
cache will contain the physical address on CPA in the location pointed to by the logical address
on the LA Bus. Thus, the next time this particular logical address is presented to the ATU, it
will hit in the cache and avoid LAT.

Load Instruction Processor State

LIPS

10

This micro-order loads the Instruction Processor (IP) state and has the same effect as IPSl'
on the ATU. The IP state consists of the following registers:

• The Program Counter (PC) ~

• The Next Program Counter (PCNL

RAN D:ATU:ATUO -ATU Operations



3-55

• The LPCX[O-ll register, which contains the length of the currently executing instruction~

and

• The XCTFLG, which indicates whether the current macroinstruction resulted from an
XCT instruction.

In order to restore state to the IP:

1) Source the value for PCN to the Address Generator's AY Bus and code
RAND:ATU:ATO:IPST.

.Note: No memory start should be coded while restoring IP state.

2) Source the value for the PC to the Address Generator's AY Bus and source XCTFLG on
CPD28 and /,,-LPCX on CPD[30-311. Code RAND:ATU:ATO:LIPS. (ION is not restored by
this operation -see ION and IOFF.) If no memory start is coded, the random IPFL should
be used to ensure that the IP is flushed and a good translation is provided.

Disable Interrupts

DISI

12

This micro-order disables interrupts for one macroinstruction.

Note: Do not code IPOP with this instruction.

Turn ION On

ION

13

This micro-order turns on the ION bit (part of the Instruction Processor state). This enables
interrupts. This micro-order disables interrupts for one instruction cycle if ION changes state.
NOTE: Do not code IPOP with this instruction.

Turn ION Off

IOFF

14

This micro-order turns off the ION bit (part of the Instruction Processor state). This action
disablles interrupts.

Note: Do not code IPOP with this instruction.

RAND:ATU:ATUO-ATU Operations



3-56

Instruction Cache Translation

ICAT

16

This micro-order loads the physical page register of the Instruction Processor (IP) with a
physical address generated by the ATU. The IP uses the ATU to translate addresses, which the
IP then uses to fetch instructions. Specifically, the following takes place:

PHY[8-21] = CPA[8-21]

Instruction Processor Start

IPST

17

This micro-order loads the Instruction Processor Program Counter (IPPC) and flushes the
IP pipeline. The IPPC is loaded with the Current Ring of Execution (CRE) and the value on the
AY Bus of the Address Generator. CRE also sources the Logical Address (LA) Bus:

IPPC = CRE[1-3] JAY[4-31]

LA [1 -3] = eRE [1 -3]

At the same time, the physical page register is loaded with a physical address created by the
ATV, as follows:

PHY[8-21]

Send I/O Command or Data

SIO

18

CPA[8-21]

This micro-order enables a command or data to the I/O controller. The command or data
must be on the CPD Bus, and must follow the I/O protocols discussed in Chapter 2.

RAND:ATU:ATUO -ATU Operations



3-57

Force Byte Addressing

BYTE

lA

This micro-order forces byte addressing of main memory, regardless of what kind of
memory start was initiated. Note: the LA register is not valid after this random.

Force Word Addressing

WORD

IB

This micro-order forces word addressing of main memory, regardless of what kind of
memory start was initiated.

Turn On Address Translation Unit

AON

lC

This micro-order turns on the Address Translation Unit, so that logical addresses are
converted into physical addresses before they go to main memory.

Turn OffAddress Translation Unit

AOFF

10

This micro-order turns off the Address Translation Unit. Effectively, all addresses are
treated as physical addresses~ there is no logical to physical translation.

Don't Load the PDR Register

NPOR

IE

This micro-order inhibits loading of the POR register. Normally., the POR is loaded every
time the CPO Bus is used. NPDR allows the contents of POR to remain unchanged regardless
of CPO use.

RAND:ATU:ATUO-ATU Operations



3-58

Extend the CP Clock

XTND

IF

This micro-oorder extends the CP clock, which is normally 140 nanoseconds, by two SYS
clock cycles to 270 nanoseconds. This micro-order also determines which of two sets of
information is captured by the ATU diagnostic register. (See the MEMC:A micro-order,
earlier in this chapter.)

RAND:ATV :ATVl-Additional ATV Operations

No Op

N

o

No operation takes place.

Append CRE

AC

1

This micro-order appends the current CRE to the most significant bits of the current logical
address as follows:

LA[1-3J

Increment DEFER Counter

DF

2

CRE[1-3J

This micro-order increments the DEFER counter and, if the test this cycle is false, replaces
the current ESR with bits 1-3 of the new logical address. In effect, this micro-order descends
one more level in an indirection chain. If the defer counter goes beyond 15, it causes a trap.

When DF is coded, an inward reference is determined by comparing the started address's
ring field to the ESR (not the CRE).

RAN D:ATU:ATU1-Additional ATV Operations



3-59

Load TREG

LT

3

This micro-order loads the transfer register (TREG) between the CPM and CPD buses
from the CPM Bus. Later, TREG can source the CPD Bus.

RAND :ATU:SPAD -Scratch Pad Input Control

The SPAD field RAND micro-orders control the scratch pad, and the micro-orders in the field
have the same meaning for the GEN, ATU, and FIX modes. The scratch pad is read when it is
enabled onto the ID Bus by the micro-orders ID:SS and ID:SC. The scratch pad is loaded from
the IY Bus or the CPM Bus, as selected by the IL field. It cannot be read and written on the
same cycle.

No Operation

N

o

The scratch pad is not written to on this cycle~ however, it may be read.

SPAR Addresses SPAD

WS

1

Load data into the scratch pad from the IY or CPM Bus, as selected by the IL field. The
scratch pad address register (SPAR) addresses the scratch pad.

CON Addresses SPAD

we

2

Load data into the scratch pad from the IY or CPM Bus, as selected by the IL field. The
CON register (which contains the value in the CNST field) addresses the scratch pad.

RAND:ATU:SPAD -Scratch Pad Input Control



3-60

Load SPAR

LS

3

This micro-order loads data into the scratch pad address register (SPAR). The default input
for SPAR is IY[24-31l. Other inputs are possible using micro-orders in the RAND:GEN:REGO
field.

RAND:FIX -Fixed-point Random Micro-orders

The RAND:FIX portion of the microword contains the following fields:

• CIB-specifies the carry-in base. This field is set by the same micro-order that sets the
RAND:FIX mode (XC or XZ). See the explanation at the beginning of the RAND section
of this chapter and under "Carry-In Logic" in Chapter 2.

• COVS-controls the CARRY bit as well as OVR and OVK bits.

• LOAD-controls the loading of register and narrow or wide conditions in the IALU.

• SPAD-specifies scratch pad operations.

RAND:FIX:COVS-Carry, Overflow and Status

COVS field micro-orders load and set the Processor Status Register (PSR) and manipulate the
CARRY register.

No Operation

N

o

No operation is performed.

Clear OVR

COVR

1

This micro-order resets PSRI (OVR) to O. (Once set, PSRI remains 1 until COVR resets
it.)

RAND:FIX:COVS-Carry, Overflow and Status



3-61

Clear OVK

COVK

2

This micro-order resets PSRO (OVK) to O.

Set OVK

SOVK

3

Set PSRO (OVK) to 1.

Load the PSR

LPSR

4

Load the Processor Status Register from the ID Bus: ID [0-3] goes to PSR[0-3].

Load Overflow and Carry

LOVC

5

Set PSR1 (OVR) and CARRY from the results of the current ALU operation. For narrow
operations (FLG3=0), OVR=OVR16 and CARRY=CRY16. For wide operations (FLG3=l),
OVR=OVRO and CARRY=CRYO. LOVC will cause an overflow trap if OVR=l and OVK=l.
An overflow trap will reset OVK to zero.

Load CARRY

LCRY

6

Load the CARRY register from carry-out of the integer ALU. For narrow operations
(FLG3=0), CARRY=CRY16; for wide operations (FLG3=l), CARRY=CRYO.

RAND:FIX:COVS-Carry, Overflow and Status



3-62

Clear CARRY

CLRC

7

Reset the CARRY register to O.

Load CARR Y from R Bus

LDCY

8

Load the CARRY register from the R Bus. For narrow operations, CARRY=RI6:, for wide
operations, CARRY = RO.

Enable ALC Functions

ALC

9

This micro-order enables the ALC skip and no-load logic and determines the ALC carry
from bits 10 and 11 of the macroinstruction.

The effect of this micro-order on the CARRY register depends on micro-orders in the IY
field. For IY:BRI and IY:BLl., ALC uses ALC carry as the shift input, and loads CARRY with
the shift out.

For other micro-orders in the IY field, CARRY is loaded with ALC carry.

Set the CARR Y Register

SETC

A

Set the CARRY register to 1.

RAND:FIX:COVS-Carry, Overflow and Status



3-63

RAND:FIX:LOAD-Load Registers

The LOAD field inhibits loading of the register file, forces narrow operations in the ALU, and
loads the transfer register.

No Op

N

o

No operation takes place.

Absolute Value

AV

1

Prevent the loading of negative values into the register file. If the FSGN test is true, then
the value is not loaded into the register file.

Force Narrow Operations

NA

2

The IALU will operate on 16-bit values only, i.e., FLAG3 =0.

Load Transfer Register

LT

3

Load the transfer register (TREG) from the CPM Bus: CPM[O-31l go to TREG[0-311.

RAND:FIX:SPAD -Scratch Pad Input Control

The SPAD field RAND micro-orders control the scratch pad, and the micro-orders in the field
have: the same meaning for the GEN, ATU, and FIX modes. The scratch pad is read when it is
enabled onto the ID Bus by the micro-orders ID:SS and ID:SC. The scratch pad is loaded from
the IY Bus or the CPM Bus, as selected by the IL field. It cannot be read and written on the
same cycle.

RAND:FIX:SPAD-Scratch Pad Input Control



3-64

No Operation

N

o

The scratch pad is not written to on this cycle~ however, it may be read.

SPAR Addresses SPAD

WS

Load data into the scratch pad from the IY or CPM Bus, as selected by the IL field. The
scratch pad address register (SPAR) addresses the scratch pad.

CON Addresses SPAD

WC

2

Load data into the scratch pad from the IY or CPM Bus, as selected by the ILfield. The
CON register (which contains the value in the CNST field) addresses the scratch pad.

Load SPAR

LS

3

Load data into the scratch pad address register (SPAR). The default input for SPAR is
IYl24-31l. Other inputs are possible using micro-orders in the RAND:GEN:REGO field.

RAN"D:FLT -Floating-Point Random Micro-orders

The RAND:FLT portion of the microword contains the following fields:

• SGN-controls the floating-point sign logic.

• EXP-controls the floating-point exponent logic.

• SCNT-specifies operations that control the hex-shifter shift count.

RAND:FLT -Floating-Point Random Micro-orders



3-65

RAND:FLT:SGN -Floating-Point Sign

The floating-point sign is the value sourced to FDO.

No-oj')

SA

o

The sign is taken directly from the SA register. No operations are performed on it.

Sign Equal FAO

MOV

1

The sign is equal to FAO (bit zero of the FA Bus).

Sign Equal FA 0-

NEG

2

The sign is equal to the inverse of FAO.

Truncate and Invert

TRI

3

Truncate the bottom guard digit of the FS Bus if the Floating-Point Status Register round
bit (FPSR8) is equal to zero. The bottom guard digit is FS[68-71l if FLAG2=1 or FS[23-39] if
FLAG2=O. Load the SA register from FAO and the SB register from FBO. The value loaded
into SA is inverted if the SWAP bit in the floating-point state register is set. The FPSR must be
set at least two cycles before this micro-order is executed.

This random is used during signed mantissa subtraction to determine the correct sign of the
result.

RAND:FLT:SGN -Floating-Point Sign



3-66

Sign Equals 0

ZER

4

The new sign will be 0 (positive number).

Sign Equals SA EXOR SB

XOR

5

The sign equals SA XOR SB. This means that if the signs are the same, the sign will be
positive (0), and if they are different, the sign will be negative (0. Thus this micro-order
produces the correct sign for the multiplication or division of floating-point numbers.

Load SA and SB

LAB

6

The SA register is set to FAO and the SB register to FBO. The previous value of SA
becomes the new sign.

Truncate

TRN

7

Truncate the bottom guard digit of the FS Bus if the Floating-Point Status Register round
bit (FPSR8) is equal to zero. The bottom guard digit is FS[68-71l if FLAG2=1 or FS[23-39] if
FLAG2=0. Load the SA register from FAO and the SB register from FBO. The FPSR must be
set at least two cycles before this micro-order is executed. This random is used during signed
mantissa addition to determine the correct sign of the result.

RAND:FLT :EXP - Floating-Point Exponent

The EXP field controls the exponent logic for floating-point numbers. The exponent is the value
that is sourced to FD [1-7l.

The micro-orders ACW, ACA, and ACN use the mantissa overflow (MOF). This is not the
same as the MOF bit in the FPSR, which is a flag for macroinstructions. Mantissa overflow can
be corrected by shifting the mantissa right by one hex digit between the mantissa ALU and the
FD Bus~ this shifts the overflow digit back into the mantissa proper, so that the most significant
digit of the mantissa is 0001. The exponent is adjusted for this shift by adding in the MOF.

RAND:FLT:EXP-Floating-Point Exponent



3-67

No-op

N

°
The exponent is the unaltered value in the Exponent Working Register (EWR).

Subtract 64

S64

°
The exponent is the value in the EWR, minus 64. In order for this micro-order to work you

must code it in conjunction with FX:X64. TheMV110000 processor uses excess-64 notation
internally. This micro-order is used to correct exponent addition:

(A+64) + (B+64) - 64 = (A+B) + 64

where A and B are the true exponent values.

Load FA

LAX

1

The exponent is the value from the FA Bus that is sourced to the Exponent ALU. This
value is equal to 0,0,FA[l-7].

.Subtract Normalize

SNM

2

The exponent is set to the value of the EWR minus MAG[0·3].

Subtract

SUB

3

The exponent is the value from the FA Bus minus the value from the FB Bus. This
micro-order is normally used for a floating-point divide operation.

RAND:FLT:EXP -Floating-Point Exponent



3-68

Correct EWR

ACW

4

Add the MOF to the exponent.

Add 64

A64

4

The exponent is the value in the EWR plus 64. In order for this micro-order to work, you
must code it in conjunction with FX:X64. This micro-order is used to correct exponent
subtraction:

(A+64) - (B+64) + 64

where A and B are the true exponent values.

Correct FA

ACA

5

Add the MOF to the FA source.

Correct and Normalize

ACN

6

(A-B) + 64

The exponent is the exponent working register, plus MAG, plus the MOF. This micro-order
normalizes floating-point numbers after an arithmetic operation. MAG is set to minus the
number of leading hexadecimal zeros in the mantissa by using the SCNT:LZD random, and the
exponent is added to the value in MAG. At the same time, the mantissa should be left-shifted
in four··bit shifts to remove the zeros. The result is a number with the smallest possible
exponent and no leading zeros in the mantissa (if the result is not zero). NOTE: MAG will be a
negative value, which will produce the proper left shift in the hex shifter.

RAN D:FLT:EXP - Floating-Point Exponent



3-69

Add

ADD

7

Add the FA and FB sources. This micro-order is used for a floating-point multiply
operation. After the mantissas are multiplied, the result can be normalized.

RAND:FLT:SCNT-Shift Count Control

The SCNT field controls the MAG register and, therefore, determines the size of the shift of
the hex shifter. SCNT also sets the SWAP bit in the STATE register, which reverses the A and
B outputs of the register file.

All of the micro-orders below except N, RST, and CMP will set the SWAP and X.GT.15
bits to O. (Note that IPOP also clears these bits.) The CMP and RST micro-orders change the
compare bits (STATE[2-3]).

Note that MAG must be loaded at least one cycle before the shift uses it.

No Load MAG

N

o

IvIAG and the swap bit are not loaded.

Restore STATE

RST

1

Load MAG[O-3], SWAP, X.GT.15, and the compare bits from the FA Bus.

Compare

CMP

2

Perform a prescale compare operation on the operands in preparation for signed mantissa
addition or subtraction. If FA < FB, set the SWAP bit. If 'R' is coded in the FWR field,
FR as the source for the working register when FA < FB~ select FS when FA> = FB. For
CMP to work correctly, a subtract operation must be coded on both the exponents and
mantissas of FA and FB. This micro-order loads MAG with the absolute value of the exponent
difference, which is used in the next cycle to prescale (right shift) the operand loaded in the
working register.

RAND:FLT:SCNT-Shift Count Control



3-70

Load Constant

LCN

3

Load a constant into MAG[O-3] from the IY field. The following constants are defined for
the IY field when LCN is used:

RO to R15

LO to L15

These are the appropriate values for right shifts from 0
to 15 hex digits. (1-15)

These are the appropriate values for left shifts from 0
to 15 hex digits. (0,15-1)

These values in the IY field do not specify the direction of the shift. (The shift direction is
specified by the FS field when the shift is desired,) The use of left and right magnitudes in the
IY field is strictly for the convenience of the programmer. These codes are provided because the
magnitude of the shift in the proper direction is not a straightforward mapping.

First Nibble Zero

FNZ

4

Set MAG to -1 if the first nibble of the mantissa is zero~ otherwise, set MAG to O. This
micro-order is used for multiply normalization. Note that no mantissa overflow (MOF) is
possible for a multiply operation.

Divide Prescale

DVP

5

Set MAG to 1 if there is a carry-out from the mantissa~ otherwise, set MAG to O.

Load Exponent Fbus

LEF

6

Load MAG[O-3] from EF[4-7] (the output of the Exponent ALU).

RAN D:FLT :SCNT -Shift Count Control



3-71

Leading Zero Detection

LZD

7

Detect leading zeros and mantissa overflow (MOF). If MOF occurs, the output of the
mantissa ALU is shifted right by four bits. Do not code FOP:TAD while using the LZD random
to detect leading zeros.

Because of timing, leading zero detection is done for a maximum of two hex digits during
the cycle when the LZD random is coded. This value will be wrong if there are more than two
leading zeros~ however, if LZD is coded again for the cycle when the value is used, then the
correct value will be calculated. Coding any other SCNT micro-orders except Nand LZD after
the LZD random will cancel any later correction attempt.

Integer ALU Micro-orders

The Integer ALU portion of the microword contains the following fields:

• lA -specifies the A output of the integer register file.

• IB-specifies the B output of the integer register file.

• ID-specifies the source for the ID Bus.

• RS-specifies the input sources for the ALU.

• lOP-controls the operation of the ALU.

• lY-specifies the source for the IY Bus.

• lL -controls the loading of the register file.

IA and IB -Integer Register File Addressing

The IA and IB fields control the addressing for the integer register file. Note that, when
floating-point numbers are being manipulated, these same fields control the addressing for the
floating-point register file. Each micro-order specifies a particular register. The following
micro··orders can be used in the IA and IB fields:

Macroinstruction Accumulator 0

ACO

o

This is the programmer-visible Accumulator O. Assembly code can access it. At IPOP, this
register must contain the same value as Accumulator 0 in the AG register file.

IA and IB -Integer Register File Addressing



3-72

Macroinstruction Accumulator 1

ACI

This is the programmer-visible Accumulator 1. Assembly code can access it. At IPOP, this
register must contain the same value as Accumulator 1 in the AG register file.

Macroinstruction Accumulator 2

AC2

2

This is the programmer-visible Accumulator 2. Assembly code can access it. At IPOP, this
register must contain the same value as Accumulator 2 in the AG register file.

Macroinstruction Accumulator 3

AC3

3

This is the programmer-visible Accumulator 3. Assembly code can access it. At IPOP, this
register must contain the same value as Accumulator 3 in the AG register file.

Wide Frame Pointer

FP

4

Register 4 contains a copy of the Wide Frame Pointer, which is stored at page 0, address 1016 •

By convention, these copies are not always the same. The register contains the valid copy.

Wide Stack Limit

SL

5

Register 5 contains a copy of the Wide Stack Limit for the current ring, which is stored at
page 0, 1416, By convention, these copies are always identical.

IA allld IB -Integer Register File Addressing



3-73

Wide Stack Base

SB

6

Register 6 contains a copy of the Wide Stack Base for the current ring, which is stored at
page 0, 1616, By convention, these copies are always identical.

Minus One

M1

7

Register 7 contains a constant -1 (all ones).

General Register 0

GRO

8

This is a general register for use by the microprogrammer. It has no assigned meaning.

General Register 1

GR1

9

This is a general register for use by the microprogrammer. It has no assigned meaning.

General Register 2

GR2

A

This is a general register for use by the microprogrammer. It has no assigned meaning.

IA and IB -Integer Register File Addressing



3-74

General Register 3

GR3

B

This is a general register for use by the microprogrammer. It has no assigned meaning.

General Register 4

GR4

C

This is a general register for use by the microprogrammer. It has no assigned meaning.

General Register 5

GR5

D

This is a general register for use by the microprogrammer. It has no assigned meaning.

Register Addressed by ACSR

SRC

E

This micro-order takes the address for the register file from the Accumulator Source
Register (ACSR).

Register Addressed by ACDR

DES

F

This micro-order takes the address for the register file from the Accumulator Destination
Register (ACDR).

IA and IB -Integer Register File Addressing



3-75

ID --ID Bus Source Control

SPAD Addressed by SPAR

SS

o

The scratch pad outputs to the ID Bus. The scratch pad address register (SPAR) addresses
the scratch pad.

SPAD Addressed by CON

SC

1

The scratch pad outputs to the ID Bus. The CON register (which contains the value from
the CNST field of the micro-order) addresses the scratch pad.

SPAR, ACD, and ACS to ID Bus

MS

2

The SPAR, ACD, and ACS registers source the ID Bus in the following manner:

I D [ 0 -1 5] = - 0 - ; I D [1 6 - 3 1] = SPAR [ 0 - 7] ) AC D [ 0 - 3] ) AC S [0 - 3 ]

ACS to ID Bus

AS

3

The ACS register sources the ID Bus in the following manner:

ID [0-27] = 0 ; ID [28-31] = ACS [0-3]

ID-ID Bus Source Control



3-76

Constant Register to ID Bus

CN

4

The constant register (CON) sources the 10 Bus in the following manner:

ID [0-23] = 0 ; ID [24-31] = CON [0-7]

CPD Bus Register-PDR to ID Bus

PO

5

The POR sources the 10 Bus. This register is used to transfer data off the CPO Bus.
Additionally, it can be used as a counter. (See TSEL: <CNT4 CNT8 >.)

B Port to ID Bus

BR

6

The B output port of the integer ALU register file sources the 10 Bus.

Zero

ZR

7

The 10 Bus is forced to zero.

ID-ID Bus Source Control



3-77

RS -·ALU Input Multiplexer Control

The RS field controls the inputs to the ALU.

ID Bus and A Port

DA

o

The ID Bus is the input to the R side of the ALU~ the A port of the register file is the input
to the S side.

A Port and ID Bus

AD

1

The A port of the register file is the input to the R side of the ALU~ the ID Bus is the input
to the S side.

CPD Bus and A Port

CA

2

The CPD Bus is the input to the R side of the ALU ~ the A port of the register file is the
input to the S side.

CPD Bus and ID Bus

CD

3

The CPD Bus is the input to the R side of the ALU~ the ID Bus is the input to the S side.

IOlt-ALU Control and Shift Magnitude

The lOP field has two separate functions: it controls the ALU and it determines the magnitude
of the hex shift specified by the IY field. The codes for the hex shift will be found with the
appropriate micro-orders in the IY field. The ALU control micro-orders determine combinations
of the Rand S inputs of the ALU and also control the Carry-In Base (CIB) polarity.

lOP -ALU Control and Shift Magnitude



3-78

Logical AND

AND

o

The logical AND of the Rand S inputs to the integer ALD.

Logical OR

OR

The logical OR of the Rand S inputs to the integer ALD.

Logical AND with Complement

ANC

2

The logical AND of the R input and the complement of the S input.

Exclusive OR

XOR

3

The exclusive OR of the Rand S inputs to the integer ALD.

Addition with Complement

CSR

4

The addition of the complemented R input to the S input with the CIB complemented (this
is a twos complement subtract if CIB is zero):

R' + S + CIB'

lOP -ALU Control and Shift Magnitude



3-79

Additlon with Complemented Carry-in

CAD

5

The addition of the Rand S inputs with the CIB complemented:

R + S + crB'

Addition with Complement

SMR

6

The addition of the complemented R input to the S input with the uncomplemented CIB:

R' + S + crB

Addition

ADD

7

The addition of the Rand S inputs with the uncomplemented CIB:

R + S + crB

IY --IY Bus Source

The IY field specifies the source for the IY Bus. As a result, it also controls the hex and bit
shifters, as well as certain ALU output functions. The IY Bus can be wide (32 bits) or narrow
(16 bits), depending on FLAGO. The effect of this is explained for each micro-order.

Append PSR

PSR

o

The Processor State Register (PSR) sources the most-significant bits of the Y Bus: Y[O-31]
comes from PSR[O-3],F[4-3l].

For narrow operations (FLAGO=O) , the source data is sign extended if it goes to the
address generator, SPAD, or the integer register file~ for other destinations, the most-significant
sixte:en bits are one filled.

IY -IY Bus Source



3-80

Pass the F Bus to the Y Bus

PASS

1

The current value of F (ALU output) passes unchanged to the Y Bus: F[O-31l goes to
Y[O-3Il.

For narrow operations CFLAGO=O), the source data is sign extended if it goes to the
address generator, SPAD, or the integer register file~ for other destinations, the most-significant
sixteen bits are one filled.

Edited Commercial Data

EDT

2

The edited translation of the least-significant byte on the A Bus goes to the Y Bus: Y[O-3l]
comes from (F[O-271,TRANS(A[24-3l] =28-31). This micro-order must be used with the
TSEL:COM2 micro-order and the CNST field.

For narrow operations (FLAGO=O), the source data is sign extended if it goes to the
address generator, SPAD, or the integer register file~ for other destinations, the most-significant
sixteen bits are one filled.

Swap Bytes

BSW

3

Interchange the two least significant bytes from the ALU output: Y[O-3l] comes from
F[O-IS] ,F[24-3l] ,F[l6-23].

For narrow operations (FLAGO=O), the source data is sign extended if it goes to the
address generator, SPAD, or the integer register file~ for other destinations, the most-significant
sixteen bits are one filled.

IY - IV Bus Source



3-81

Bit Shift Left-One Filled

BLI

4

Shift the ALU output (F) left one bit. Shift in a one, unless RAND: <XC XZ>:COVS:ALC
is coded. In that case, the least-significant bit will be the ALC carry, and the CARRY register
will be loaded with the shifted-out bit.

For narrow operations (FLAGO=O), the bit-shifter output is sign extended if it goes to the
address generator, SPAD, or the integer register file~ for other destinations, the most-significant
sixteen bits are one filled.

Bit Shift Left-Zero Filled

BLO

5

SJhift the ALU output (F) left one bit. Shift in a zero, unless RAND: <XC
XZ>:COVS:ALC is coded. In that case, the least-significant bit will be the ALC carry, and the
CARRY register will be loaded with the shifted-out bit.

For narrow operations (FLAGO=O), the output of the bit shifter is sign extended if it goes
to the address generator, SPAD, or the integer register file~ for other destinations, the
most-significant sixteen bits are one filled.

Bit Shift Right-One Filled

BRI

6

Shift the ALU output (F) right one bit. Shift in a one, unless RAND: <XC
XZ> :COVS:ALC is coded. In that case, the most-significant bit will be the ALC carry, and the
CARRY register will be loaded with the shifted-out bit.

For narrow operations (FLAGO=O), the bit-shifter output is sign extended if it goes to the
address generator, SPAD, or the integer register file~ for other destinations, the most-significant
sixteen bits are one filled.

IY - IY Bus Source



3-82

Bit Shift Right-Zero Filled

BRO

7

Shift the ALU output (F) right one bit. Shift in a one, unless RAND: <XC
XZ>:COVS:ALC is coded. In that case, the most-significant bit will be the ALC carry, and the
CARRY register will be loaded with the shifted-out bit.

For narrow operations (FLAGO=O), the shifter output is sign extended if it goes to the
address generator, SPAD, or the integer register file~ for other destinations, the most-significant
sixteen bits are one filled.

Hex Shift Right-Zero Filled

HRO

8

The hex shifter shifts the data selected by ALU-input multiplexer R to the right in 4-bit
increments and shifts zeros in from the left. The lOP field determines the magnitude of the
shift. The lOP codes for a right shift are:

Mnemonic

R1

R2

R3

R4

R5

R6

R7

@R

FLAGO=O -+ zero extended

IY - IY Bus Source

Value

o

2

3

4

5

6

7

Description

Hex shift right 1.

Hex shift right 2.

Hex shift right 3.

Hex shift right 4.

Hex shift right 5.

Hex shift right 6.

Hex shift right 7.

Hex shift right
(ACSR[1-3) +1). ACSR =
X111 gives a result of
zero.



3-83

Hex Shift Left-Zero Filled

HLO

9

The hex shifter shifts the data selected by ALU-input multiplexer R to the left in 4-bit
increments and shifts zeros in from the right. The lOP field determines the magnitude of the
shift. The lOP codes for a left shift are:

Mnemonic

@L

L1

L2

L3

L4

L5

L6

L7

FLAGO=O -+ zero extended

Hex Rotate Right

HRT

A

Value

o

2

3

4

5

6

7

Description

Hex shift left by
ACSR[1-3]; ACSR = XOOO
gives a result of zero.

Hex shift left 1.

Hex shift left 2.

Hex shift left 3.

Hex shift left 4.

Hex shift left 5.

Hex shift left 6.

Hex shift left 7.

The hex shifter rotates the data selected by ALU input multiplexer R to the right in 4-bit
increments. The lOP field determines the magnitude of the shift. The lOP codes for rotation
are:

Mnemonic

R1

R2

R3

R4

Value

o

2

3

Description

Hex rotate right 1.

Hex rotate right 2.

Hex rotate right 3.

Hex rotate right 4.

IY -IY Bus Source



3-84

Mnemonic Value Description

RS 4 Hex rotate right 5.

R6 5 Hex rotate right 6.

Rl 6 Hex rotate right 7.

@R 7 Hex rotate right
(ACSR[1-3] +1). ACSR =
X111 gives a result of
zero.

FLAGO = 0 - zero extended

Byte Sign Extension

BSX

B

Extend the sign bit of the least-significant byte on the R Bus: R24 is repeated 24 times, so
that Y[0-31l comes from 24<R24>,R[24-311.

Word Zero Extension

wzx

c

The most-significant word on the Y Bus is zero filled~ the least-significant word comes from
the least-significant word of the R Bus. Y[0-31] equals 16<0>,R[16-311.

Word Sign Extension

WSX

E

Extend the sign bit of the least-significant word on the R Bus. Y [0-31l equals
16 <R16 > ,R[l6-311.

IL - Integer Register File Input

The IL field controls the input multiplexer for the integer register file and the scratch pad. It
also enables loading of the register file. The input port address is the same as the B output port
address, i.e., the IB field specifies it.

IL -Integer Register File Input



3-85

No Operation

N

o

This micro-order disables the multiplexer. Note that this micro-order is identical to NM.
Different mnemonics are provided for the convenience of the microcoder, to indicate differences
in intention.

Select CPM Data

NM

o

The multiplexer selects the CPM Bus, but the register file is not loaded. This micro-order
allows the loading of CPM data into the scratch pad.

Select lY Data

NY

1

The multiplexer selects the IY Bus, but the register file is not loaded. This micro-order
allows the loading of IY data into the scratch pad.

Select and Load CPM Data

M

2

The multiplexer selects the CPM Bus and loads the data into the register addressed by lB.

Select and Load IY Data

Y

3

The multiplexer selects the IY Bus and loads the data into the register addressed by lB.

IL -Integer Register File Input



3-86

Floating-Point ALU Micro-orders

The Floating-point Unit portion of the microword contains the following fields:

.. FR -specifies the source of the FR Bus.

.. FS-specifies the source of the FS Bus.

.. FOP-controls the floating-point ALU operations.

.. FWR -specifies the input to the working register.

.. FeW-specifies the write address for the FPU register file.

" FL -specifies the input to the FPU register file.

" FRG-controls the loading of FPU registers.

.. FX-controls the excess-64 exponent correction.

The FR, FS, FOP and FWR fields are also used as the system-wide CNST field. Therefore, use
of the floating point unit generally prohibits use of the constant field and vice-versa.

FR-FR Bus Source

The FR Bus drives the R input of the mantissa ALU and can source the working register. The
FR field determines the source for the FR Bus.

FA Bus

FA

o

FA[8-7l] is the source for the FR Bus. You can use this micro-order to move values from
the register file to the ALU.

Multiplier Partial Product

MP

1

The multiply ALU M[8-7l] sources the FR Bus. This micro-order brings partial products
to the mantissa ALU, where they are added into the partial sum during multiplication.

FR-·FR Bus Source



3-87

Round Bit

RB

2

The rounding logic calculates the rounding bit: either 31 or 63 (FLAG2=O or 1). This bit
represents either a truncation of the final result or an unbiased rounding, depending on whether
FPSR8 is set. The bit is driven onto the FR Bus and may be added to the working register~ the
result is a correctly rounded mantissa. If the first four bits of the mantissa are zero, the FDI Bus
is zeroed (true zero). The round bit is usually added to the result during the normalization
cycle.

Divide Partial Remainder

DR

3

The DPR register (DPR[8-71]) sources the FR Bus. Note that passing data through the
DPR register produces a I-bit left shift. This shift is used during the division algorithm to move
the current partial remainder into position for the next subtraction.

During a divide operation, both FCW and IB must be coded with the register that contains
the divisor.

FS -:FS Bus Source

The FS Bus sources the S input of the mantissa ALU. It can also source the working register.
The sources to the FS Bus are controlled by the FS field. Because the FS Bus is the only output
for the hex shifter, the FS field also includes the coding that determines whether the hex shifter
shifts right or left. Note that the size of the shift is determined by MAG[O-3], which in turn has
been determined by the RAND:FLT:SCNT field. FS[40-72] is zeroed for single-precision
operations.

FB Bus

FB

o

The FB Bus sources the FS Bus. The FB Bus is the output bus for the B port of the register
file.

FS-FS Bus Source



3-88

Zero

ZR

1

The FS Bus is zeroed~ no data is driven onto the bus at this time.

Right Shift

RS

2

The output of the working register to the FS Bus is shifted right. The value in MAG
represents the number of hexadecimal digits shifted.

Left Shift

LS

3

The output of the working register to the FS Bus is shifted left. The value in MAG
represents the number of hexadecimal digits shifted.

FOP -Mantissa Operations

The FOP field controls the operations of the mantissa ALU. The inputs to the ALU are the FR
and FS buses. The output goes to the FF Bus.

Except during division, the mantissa ALU adds and subtracts unsigned numbers. A
negative mantissa result is meaningful only for comparison purposes. During floating-point
addition or subtraction, a prescale operation is performed to ensure that the smaller operand is
on the FR Bus and the result of mantissa subtraction is meaningful.

The FF Bus sources the PO Bus either directly or right shifted by four bits.

Conditional Add

ADD

o

Add the values on FR and FS together if SA is equal to SB (i.e., if the signs are the same)~

otherwise, subtract FS from FR. A prescale operation must be performed on the FR operand to
obtain a meaningful result. See the FLT:SCNT:CMP random description earlier in this chapter
for details.

FOP--Mantissa Operations



3-89

Conditional Subtract

SUB

1

Subtract FS from FR if SA is equal to SB (i.e., if the signs are the same); otherwise, add
them. A prescale operation must be performed on the FR operand to obtain a meaningful result.
See thl~ FLT:SCNT:CMP random description for details.

Unconditional Add

TAD

2

Add FR to FS regardless of the signs of the numbers.

Unconditional Subtract

TSB

3

Subtract FS from FR regardless of the signs of the numbers. TSB is coded for prescale
compare and divide operations. During divide operations, TSB will cause the ALU either to add
or subtract, depending on the sign of the partial remainder from the previous operation.

FWR. -Working Register Input

The FWR field controls the input multiplexer for the working register. Note that loading of the
working register is controlled by micro-orders in the FRG field; FWR only selects the source to
be loaded.

FS Bus

S

o

Select the FS Bus to source the working register.

FWR-Working Register Input



3-90

FR Bus

R

Select the FR Bus to source the working register.

This micro-order can be overridden if the CMP micro-order is coded in the
RAND:FLT:SCNT field. In this case, if the value on FR is greater than or equal to the value on
FS (FR > = FS), then FS is the source for the working register.

Left Shift

Q

2

Shift the data from the working register left one bit. Put the value of the Q bit, from a
divide operation, into the least-significant bit of the working register. (For single-precision, the
least-significant bit is 39~ for double-precision, 71,) The Q bit is derived from a subtraction or
addition operation that produced a partial remainder. After a series of subtractions or additions,
the bits that have been shifted into the working register will be the quotient from the complete
divide operation.

During division cycles, TBS is coded in the FOP field. The division hardware will perform
an addition or subtraction based upon the value of the partial remainder from the previous
operation.

FDBus

o

3

Select the FD Bus to source the working register.

Few -Floating-Point Register Write Address

The FCW field specifies the write address for the floating-point register file. (The read addresses
for the register file are specified by the IA and IB fields, the same as for the integer register
file,) The input to the register file is the FDI Bus, and the FCW field specifies which register the
data from the FDI Bus will go into.

The floating-point accumulators and general registers correspond in their addresses to the
integer accumulators. This is useful for operations, such as integer division and multiplication,
that use both the integer and floating-point ALUs.

Few -Floating-Point Register Write Address



3-91

The mnemonics listed below can also be used in the IA and IB fields when those fields are
used to address the output ports of the floating-point register file.

FP Accumulator 0

FPO

o

FPO addresses floating-point accumulator (FPAC) O. This is the macroprogram accumulator.

FP Accumulator 1

FP1

1

FP1 addresses floating-point accumulator (FPAC) 1. This is the macroprogram accumulator.

FP Accumulator 2

FP2

2

FP2 addresses floating-point accumulator (FPAC) 2. This is the macroprogram accumulator.

FP Accumulator 3

FP3

3

FP3 addresses floating-point accumulator (FPAC) 3. This is the macroprogram accumulator.

Integer Halving Constant

IHC

4

IHC addresses a register that always contains a constant: EXP=14, Mantissa=.5. This
constant is used for conversion from floating point to fixed point and for halving. (Note that the
exponent is in excess-64 form, i.e., the actual decimal value stored is 78.)

Few -Floating-Point Register Write Address



3-92

Constant Zero

ZER

5

ZER addresses a register that contains a constant zero.

Constant Maximum Number

MAX

6

MAX addresses a register that contains the largest power of 10, minus 1, that will fit in a
floating point mantissa: (0 16)-1 = 9999999999999999.

Floating-Point General Register 6

FG6

7

FG6 addresses a general register the microprogrammer may use for any purpose. There is
no restriction on this register such as there is on the FPAC registers.

Floating-Point General Register 0

FGO

8

FGO addresses a general register that the microprogrammer may use for any purpose. There
is no restriction on this register such as there is on the FPAC registers.

FGO is the only general-purpose register that is saved in a context block when a page fault
occurs. Use FGO for memory to FPAC operations (e.g., FAMS).

Floating-Point General Register 1

FG1

9

FG1 addresses a general register that the microprogrammer may use for any purpose. There
is no restriction on this register such as there is on the FPAC registers.

Few -Floating-Point Register Write Address



3-93

Floating-Point General Register 2

FG2

A

FG2 addresses a general register that the microprogrammer may use for any purpose. There
is no restriction on this register such as there is on the FPAC registers.

Floating-Point General Register 3

FG3

B

FG3 addresses a general register that the microprogrammer may use for any purpose. There
is no restriction on this register such as there is on the FPAC registers.

Floating-Point General Register 4

FG4

C

FG4 addresses a general register that the microprogrammer may use for any purpose. There
is no restriction on this register such as there is on the FPAC registers.

Floating-Point General Register 5

FG5

D

FG5 addresses a general register the microprogrammer may use for any purpose. There is
no restriction on this register such as there is on the FPAC registers.

Accumulator Source

SRC

E

When SRC is coded, the Accumulator Source Register (ACSR) addresses the floating-point
register file.

Few -Floating-Point Register Write Address



3-94

Accumulator Destination

DES

F

When DES is coded, the Accumulator Destination Register (ACDR) addresses the
floating-point register file.

FL -Register File Load Specifier

The FL field determines the source for the register specified in the FCW field. MVII0000
system buses are 32 bits wide, but the floating-point register file is 64 bits
wide. Double-precision data must be loaded from the system in two 32-bit segments
(most-significant followed by least-significant).

[f the double-precision flag is not set (flag2 =0), FDI[32-63] is forced to zero.
Single-precision numbers use only the most significant half of a location in the register file.

No Load

N

o

No value is written to the register file. However, data is taken from the CPM Bus and
driven onto the FDI Bus. CPM[O-3I] goes to FDI[0-3I] and FDI[32-63l.

Load Lower Half

ML

ML loads the least-significant 32 bits of a location in the floating-point register file.
CPM[0-31] are sourced onto FDI[32-63] and FDI[0-311, and the least significant portion of the
register file (bits 32-63) is loaded from the FDI Bus.

Load Upper Half

MH

2

MH loads all 64 bits of a location in the floating-point register file. CPM[0-3 1] source these
bits. For double-precision numbers (FLAG2= 0, CPM[O-31] are sourced on FDI [0-31] and
FDI [32-63]~ for single-precision numbers (FLAG2=0), CPM[0-31] are sourced on FDI [0-31],
while FDI[32-63] are set to zero. All 64 bits of the register file are loaded from the FDI Bus.

FL -Register File Load Specifier



3-95

Note that the most significant half of double precision data must always be loaded first,
because MH destroys the least significant bits.

Load From FD

D

3

D sources FD [0-63] onto all 64 bits of the FDI Bus and loads all 64 bits of a location in the
floating-point register file from the FDI Bus. If the FR field is coded with RB (i.e., a rounding
operation is being performed), the FDI Bus will be forced to zero if the top 4 bits and carry-out
of the mantissa ALU are zero.

FRG -Floating-Point Register Load Control

FRG controls the loading of various floating-point registers.

No Operation

N

o

N produces no effect.

Update FPSR

UFS

1

The Z, N, OVF, and UNF bits of the FPSR are updated. Z and N are set to the current
values from the FDI Bus~ OVF and UNF are ORed with the current values from the exponent
ALU, so that the values in FPSR represent an accumulated value since the last time the bits
were cleared.

Care must be taken if only the Z and N flags are to be updated. To avoid causing invalid
floating point faults, pass a valid exponent through the exponent ALU if a valid floating point
calculation has not been performed.

FRG -Floating-Point Register Load Control



3-96

Read LO

RLO

4

RLO reads LOW[O-63] to M[8-71l. The LOW register is part of the multiply ALU
hardware, and its contents are calculated as follows (where X is the X register and MY is the
byte selected by YSEL). This micro-order is primarily for diagnostic visibility.

MY * X[24-31] => LOW[O-7] (These bits are indeterminate.)
MY * X[8-15] => LOW[8-23]
MY * X[24-31] => LOW[24-39]
MY * X[40-47] => LOW[40-55]

0 => LOW[56-63]

Load Guard Digits

LGD

5

Load the Divide Guard Digit (DGD) register. This register holds the least-significant digits
of the dividend before it is transferred to the DPR register. During division setup, the prescaled
dividend is transferred from the working register to the register file, so that it may be
transferred to the FS Bus. The DGD register prevents loss of guard digits during this transfer.

Partial Multiply and Load Working Register

LWM

6

Step the multiply pipe~

1) Add the data in the HI and LO registers and source the result on the M Bus.

2) Multiply the x register by the byte in the Y register selected by YSEL.

3) Load intermediate result in the HI and LO registers.

4) Decrement YSEL.

5) Load the working register.

Normally, the multiply pipe will be stepped for each byte of the multiplier in Y. LWM must be
invoked one cycle before the first partial product is added into the working register. To
accumulate partial products, M should source the FR Bus, the working register should be right
shifted one byte and sourced on the FS Bus, the mantissa ALU should perform addition, and
the FD Bus should source the working register input bus.

FRG --Floating-Point Register Load Control



3-97

Load Working Register

LWR

7

LWR loads the working register at the end of the cycle (i.e., after a value has been
calculated by the Mantissa ALU).

Load Y

LY

8

Load the Y register and the YSEL counter. LY loads a new value in Y and restarts the
multilPlication process, while maintaining the old value in X. The YSEL counter is loaded with
the value from the IY field. YSEL=O points to the high byte of the Y register.

Load XY

LXY

9

LXY loads the X and Y multiplier registers and the YSEL count. This is the initial setup
command for a multiply operation. The X and Y registers hold the multiplicand and multiplier,
respectively. The YSEL counter, which is loaded from the IY field (inverted), specifies which
byte of the multiplier will be used for the next partial product. YSEL=O points to the high byte
of the Y register.

Source FPSR

SFS

A

SFS sources the Floating-Point Status Register to the FA Bus, bits 0-15. SFS disables the
output to FA from the register file.

Source STATE

SST

B

:SST sources the floating-point STATE register to the FA Bus, bits 0-15. SST disables the A
output of the register file.

FRG -Floating-Point Register Load Control



3-98

Load FPSR

LFS

e

lLFS loads the Floating-Point Status Register (FPSR) from the FDI Bus, bits 0-15.

Load STATE

LST

D

LST loads the floating-point STATE register from bits 0-15 of the FA Bus.

Initial Divide

IDV

E

IDV is the micro-order that begins a division procedure. At this point the Divide Guard
Digit register should contain the least-significant bits of the dividend, while the most-significant
bits should be in a location in the register file. IDV sources DGD onto the FR Bus bits 32-39 or
64-72 (FLAG2=0 or D. Which bits are used depends on the precision flag (FLAG2=1, double
precision~ FLAG2=0, single precision). At the same time, the FR Bus should be sourced by the
general register file for the most-significant bits. The FS Bus should be sourced with the divisor
from the register file (address must be in IB and FeW fields) and the mantissa ALU should
perform subtraction (FOP:TSB). At the end of the cycle, the DPR is loaded with the initial
partial remainder.

Double Load

LWD

F

LWD loads the DPR and WR twice per cycle.

FRG -Floating-Point Register Load Control



3-99

FX - Excess-64 Control

The FX field is used in conjunction with the RAND:FLT:EXP:<S64 and A64> micro-orders.
These micro-orders correct excess-64 exponents after exponent addition or subtraction.

No Operation

o

N

No operation is performed. This micro-order should be used with the RAND:FLT:EXP: <N
and ACW> micro-orders.

Excess··64 Conversion

X64

1

This micro-order sources 64 to the S input of the exponent ALU. That value can then be
added to or subtracted from the Exponent Working Register. Adding and subtracting 64 corrects
exponents after addition or subtraction.

End of Chapter

FX -Excess-64 Control



Chapter 4
Microprogramming Examples

Thiis chapter gives examples of MV/10000 microcode. The microinstructions are presented
as they are printed by the microassembler. The microfields are presented in the same order as
in Chapters 2 and 3, except that the microassembler reverses the FL and FCW fields. Some
microfield names have been abbreviated in the microword headers~ the micro-orders for each
field are those given in Chapter 3. Note that the "LABEL" field is a pseudo field for the
microassembler. Table 4-1 lists the abbreviations found in the microword headers.

Table 4-1. Microword Header Abbreviations

Abbreviation Field Name

OP COP or UCOP

D DSR

AG AGB

ST MEMS

CM MEMC

CPM CPMS

CPD CPDS

RO REGO or ATUO or COVS or
SGN

R1 REG1 or ATU1 or LOAD or
EXP

R2 SPAD or SCNT

W FW

For illustration purposes, we have left many of the microcode fields blank. In a genuine
microroutine, many of these fields would of course be used. For instance, in the examples of
memory accesses, you would have to specify a source and destination for the CPM Bus.



4-2

~ennory i\ccesses

Because synchronization between the memory and the CPU is automatic, you need not
consider timing in memory accesses. You may start memory (MEMS micro-order) in one
microinstruction and complete memory (MEMC micro-order) in any following
microinstruction. (A memory complete need not follow the start immediately, so long as
there is no other intervening memory start. However, you should not leave a memory start
pending for long, as this blocks I/O traffic.) The examples below show typical sequences.

Read Operation

In the example below, the double-word C32-bit) read operation is started with the RD
micro-order. This operation is completed on the next microinstruction with the R micro-order.
Note that the CPM Bus is sourced by main memory (MM), as it will be for any read
operation.

LABEL: OP TSEL ADDRESS 0 AA AB AG AOP AL ST CM CPM CPO RM RO Rl R2 IA IB 10 RS lOP IY IL FR FS FOP W FCW FL FRG

STARTRD: ---- ------ -------- - --- AGO B PSB -- RD -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- --­
RDCOMPLT: ---- ------ -------- - --- --- -- --- -- -- R MM --- GN ---- LT - --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

Although the example above is for a double-word read, the same sequence would apply
to single-word or byte reads.

Write Operation

In the following example, the word write C16-bit) operation is started with the WW
micro-order and completed with the W micro-order.

LABEL: OP TSEL ADDRESS 0 AA AB AG AOP AL ST CM CPM CPO RM RO Rl R2 IA IB 10 RS lOP IY IL FR FS FOP W FCW FL FRG

STARTWR: ---- ------ -------- - --- ARO B PSB -- WW -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
WRCOMPLT: ---- ------ -------- - ONE AGl B ADD -- -- W AG --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

Read and Modify Operation

A read and modify operation requires no special memory start or complete. It begins with
a write start, followed by a read complete. The read complete will not release memory, which
remains started until a write complete is coded.

[n the following example, the first microinstruction starts memory for a word write. The
second has a read complete. The third instruction actually completes the start with a write.
This sequence is used when you want to read information and write it back, possibly
modified, to the same location.

LABEL: OP TSEL ADDRESS 0 AA AB AG AOP AL ST CM CPM CPO RM RO Rl R2 IA IB 10 RS lOP IY IL FR FS FOP W FCW FL FRG

STARTRM: _.--- ------ -------- - --- --- -- --- -- WW -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
READ: ---- ------ -------- - --- --- -- --- -- -- R --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
WRITE: _.--- ------ -------- - --- --- _.- --- -- -- W --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

Memory Accesses



4-3

Execute Completion

Microcode reads instructions for the IP by starting memory with a read word and a
RAND:ATU:ATUO:IPST or RAND:ATU:ATUO:ICAT instruction. The reference is then
completed with a MEMC:X micro-order. If there is any other combination of micro-orders,
the ATU will not check execute protection.

In the following example, RW is coded in the same microinstruction with IPST. The
reference is completed in the next instruction with an X.

LABEL: O:? TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG

RDINST: --._- .:..----- -------- - --- --- -- --- -- RW -- --- --- AT IPST --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
XCOHPLT: --._- ------ -------- - --- --- -- --- -- -- x --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

Overlapped Write Operation

In this example, the WD micro-order starts a double-word write operation. This operation
completes during the next microinstruction with the W micro-order. As the first write
completes, a second is started. The third microinstruction completes the second start. For the
first write, the most-significant bits of a register in the FPU source the CPM Bus~ for the
second write, the least-significant bits are the source.

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA 18 ID RS IOP IY IL FR FS FOP W FCW FL FRG

STl: ---- ------ -------- - --- --- -- --- -- WD -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
ST2CMPLl: ---- ------ -------- - --- --- -- --- -- WD W HF --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
CMPL2: ---- ------ -------- - --- --- -- --- -- -- W LF --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

Overlapped Read and Write

The following sequence shows a series of reads overlapped with a series of writes.

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG

RDl: ---- ------ -------- - --- --- -- --- -- RW -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
RD2: ---- ------ -------- - --- --- -- --- -- RW R --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
WRl: ---- ------ -------- - --- --- -- --- -- WW R --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
WR2: ---- ------ -------- - --- --- -- --- -- WW W --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
--------- ---- ------ -------- - --- --- -- --- -- -- W --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

The following sequence shows a series of writes overlapped with a series of reads. This
sequence is not illegal, but should be avoided. When' a read start is coded in the same
instruction with a write complete, it causes memory to extend the microinstruction cycle.

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W Few FL FRG

WRI : ---- ------ -------- - --- --- -- --- -- WW -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
WR2: ---- ------ -------- - --- --- -- --- -- WW W --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
RDl: ---- ------ -------- - --- --- -- --- -- RW W --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
RD2: ---- ------ -------- - --- --- -- --- -- RW R --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
--------- ---- ------ -------- - --- --- -- --- -- -- R --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

Illegal Sequences

The following examples show illegal sequences of microinstructions. No memory start can
occur before the previous memory start is completed.

Memory Accesses



4-4

In the first sequence, RW starts memory in the first microinstruction. However, the N in
the MEMC [CM] field does not release memory. Therefore, the RW is illegal, because it tries
to start memory before it has been released.

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR I'S FOP W FCW FL FRG

RDl: ---- ------ -------- - --- --- -- --- -- RW -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
RD2: ---- ------ -------- - --- --- -- --- -- RW N --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
RDCOMPLTl: ---- ------ ------ -- - --- --- -- --- -- -- R --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- ••-- --- - --- -- ---
RDCOMPLT2: ---- •. ----- -------- - --- --- -- --- -- -- R --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- ••-- --- - --- -- ---

In the second example, the sequence begins with a WW memory start. However, in the
next microinstruction, a read complete is coded. This is a read/modify sequence (see
above). Memory is not released by the R micro-order, and, therefore, the WW coded in the
same microinstruction is illegal.

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG

WRSTARTl: ---- ------ -------- - --- --- -- --- -- ww -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
WRSTART2: ---- ------ -------- - --- --- -- --- -- WW R --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
WRCOMPLTl: ---- ------ -------- - --- --- -- --- -- -- W --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
WRCOMPLT2: ---- ------ -------- - --- --- -- --- -- -- W --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

IPOP -Crossing Macroinstruction Boundaries

The IPOP procedure connects one macroinstruction routine to another. The object of IPOP is
to get the IP to provide a starting microaddress based on its decoding of the next
macroinstruction, and to properly set up the parameters for that instruction. IPOP is
performed by coding a NAC:COP micro-order that pops an empty stack and specifies the Top
of Stack (TOS) as the next address. At the same time, the microinstruction tries to perform
an effective address calculation (EFA) for the next macroinstruction. (Of course, the next
macroinstruction may not require an EFA, in which case the effort is wasted. However, no
instruction cycles are lost, and if an EFA is needed, the calculations are already under way
before the next microroutine starts.)

The following microinstruction implements IPOP. (For this to work, the stack must be
empty.)

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG

--------- CRTN TRUE -------- - --- --- D EFA -- S@ -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- -._- --- - --- -- _

A) CRTN -When its condition is true, this micro-order has a next address of TOS and pops
the microstack. The microstack must be empty.

B) TRUE -This forces CRTN to pop and take TOS as the next address. If a normal test is
used, e.g., an ALU test, the false path of the microprogram must code an abort for the
memory start.

C) D -This micro-order designates the displacement register as the source of the AGB Bus.
The Address Generator will therefore try to construct a logical address from the
displacement field of the next macroinstruction.

D) EFA -This micro-order causes the Address Generator to do an EFA calculation, based
on the decoded macroinstruction from the IP, and using the displacement from that
instruction.

E) S@ -This micro-order, in conjunction with the EFA micro-order, attempts a memory
start based on the IP decode information from the next macroinstruction. The IP also

IPOP -Crossing Macroinstruction Boundaries



4-5

determines whether an actual memory start takes place, i.e., the S@ micro-order may
not start memory.

Indirection Resolution

The following microroutine illustrates indirection resolution. The routine is called from a
microinstruction that starts memory for a word write (WW). The address for the write is in
AR1 in the AG. If the indirection bit is set in the address, the instruction does a jump to the
indirecton resolution subroutine.

An important general rule for calling microroutines is that a memory abort should be
coded following the return from a subroutine which attempted an EFA calculation (a bogus
memory start will be pending as a result).

Calling Microinstruction

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO RI R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG

,start a write to the address in ARI.
,Do a conditional jump to the indirection subroutine (IRES). The indirection bit determines whether the jump occurs.

--------- CJSR INDR IRES - --- ARI B PSB N WW -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---
,The next microinstruction must complete the wr i te.

Called Routine

The subroutine that does the indirection chaining aborts the original write reference, and
begins a read instead. The RAND:ATU:ATUl:DF micro-order is coded, which ensures that
indirection will not exceed 15 levels.

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO RI R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG

,Abort the write started in the calling routine.
,Stal:t a read from the address in ARI.
;Codl~ DF to ensure indirection depth protection.
;LEAP into the indirection loop.

IRES: LI~AP ------ IRES2 - --- ARI B PSB N RD A --- --- AT ---- DF --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

;This microinstruction is the top of the indirection loop.
;Abol:t the write started by IRES3.
;Start a read from the address in ARI.

;Code DF to ensure indirection depth protection.
IRESI : LI~AP ------ IRES2 - --- ARI B PSB N RD A --- --- AT ---- DF --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

;Complete the memory reference started in the previous microinstruction.
;Load the contents of the location addressed by ARI into ARI.

IRES2: LJ:;AP ------ IRES3 - --- ARI -- --- M -- R MM --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

,Stalct a memory write to the location addressed by ARI (i.e., try the original memory reference again).
,If the indirect bit is not set, Teturn to the calling routine.
;If the indirect bit is set, go to the top of the indirection loop.

IRES3: CRTN NINDR IRESI - --- ARI B PSB N WW -- --- --- -- ---- --- --- --- --- -- -- --- ---- -- --- --- --- - --- -- ---

Indirection Resolution



4-6

Dispatching

The microsequencer can construct addresses using the dispatch register (see Chapter 2). The
following example demonstrates dispatching in a microroutine with the implementation of an
actual macroinstruction: WCOB (Wide Count Bits). WCOB counts the bits that are set in the
source (ACS) accumulator and adds that count to the value in the destination (ACD)
accumulator. The microroutine that implements WCOB uses a dispatch table to determine the
number of I-bits in each nibble of the source accumulator.

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG

;This microinstruction is the initial instruction in the routine. It is reached after IPOP by means of a starting
;m.lcroaddress (STUAD), generated by the IP decode RAMs.
;The SRC and AGA micro-orders drive the AG source register value onto the CPD Bus. The GN and LD micro-orders
; (RAND:GEN:REGl:LD) load this value into the dispatch register (DSP[1-7l = CPD[24-31l).
;The PDR register is loaded automatically from the CPD Bus.

WCOB: LEAP ------ WCOBI - SRC --- -- --- -- -- -- --- AGA GN ---- LD --- --- --- -- -- --- ---- -- --- --- ---. - --- -- ---

WCOBl:

;This microinstruction provides the initial dispatch into the table. The DSPA micro-order constructs a microaddress based on
;WCOBTAB (the dispatch table's location, which is found in the ADDRESS field). The F micro-order specifies a 4-bit
;dispatch. The AG micro-orders (DES, DES, C, ADD, and Y) add the CNST value (coded in the FA field) into the destination
;register in the AG. The CPM:AG micro-order sources this result to the CPM Bus. The IB:DES and IL:M micro-orders load this
;value into the destination register in the Integer ALU.

;The IOP:Rl and IY:HRO micro-orders cause a 4-bit right shift. The hex shifter is sourced by PDR via the ID Bus (PD) and the
;AI,U R-input multiplexer <DA). The output of the hex shifter goes to the IY Bus and then to the CPD Bus (CPD:IY), and the
;shifted value returns to the PDR. Thus the new PDR value is the old value right shifted 4 bits and zero filled. The PDR
;value is also ANDed with alII's (IA:Ml); the result can be tested by TSEL:FZR to see if the remaining bits in PDR are zero.

DSPA ------ WCOBTAB F DES DES C ADD Y -- -- AG IY GN ---- LD --- Ml DES PD DA Rl HRO M 000 ._-- --- - --- -- ---

Dispatch Table

The dispatch table has one test instruction and fifteen nearly identical table entries. Each
table entry performs a new dispatch based on the beginning of the table: WCOBTAB. Which
table entry is executed depends on the DSP register, which holds the value of the current
least-significant nibble in the PDR register. The CNST value equals the number of 1 bits in
that nibble. For example, if the nibble is 0111, it dispatches to the seventh table entry~ the
CNST field for that entry contains 310, The CNST value is added into the value in the
destination accumulator each time a table entry is executed.

LABEL: OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG

;This microinstruction begins the table and is also the test to see whether the routine is complete. Whenever the nibble
; heing tested is 0, the table entries dispatch to loca tion 0 in the table. The TSEL: FRZ micro-order tests whether the
;remaining bits in the PDR regist,~r are equal to zero. This test was set up by the Ml micro-order in the previous
;m.lcroinstruction. If non-zero bits remain, control goes back to WCOBl, which dispatches into the table again. If no bits
;remain, the routine is done and this microinstruction IPOPs.

WCOBTAB: CRTN FZR WCOBI --- D EFA -- S@ -- --- --- -- ---- --- ---

;Each microinstruction in the table is identical to WCOBl,
except fOl: the CNST field, which holds a value equal to the

;number of l's in the current nibble.

--------- DSPA ------ WCOBTAB F DES DES l' ADD Y -- AG IY GN ---- LD --- Ml DES PD DA Rl HRO M 001
--------- DSPA ------ WCOBTAB F DES DES C ADD Y -- AG IY GN ---- LD --- Ml DES PD DA Rl HRO M 001
--------- DSPA ------ WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA Rl HRO M 002
--------- DSPA ------ WCOBTAB F DES DES C ADD Y -- AG IY GN LD --- Ml DES PD DA Rl HRO M 001
--------- DSPA ------ WCOBTAB F DES DES C ADD Y -- AG IY GN LD Ml DES PD DA Rl HRO M 002
------~--- DSPA ------ WCOBTAB F DES DES C ADD Y -- AG IY GN LD Ml DES PD DA Rl HRO M 002
--------- DSPA ------ WCOBTAB F DES DES C ADD Y -- AG IY GN LD Ml DES PD DA Rl HRO M 003
--------- DSPA ------ WCOBTAB F DES DES C ADD Y AG IY GN LlJ Ml DES PD DA Rl HRO M 001
--------- DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA Rl HRO M 002
--------- DSPA ------ WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA Rl HRO M 002
--------- DSPA ------ WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA Rl HRO M 003
--------- DSPA ------ WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA Rl HRO M 002
--------- DSPA ------ WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA Rl HRO M 003
--------- DSPA ------ WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA Rl HRO M 003
--------- DSPA ------ WCOBTAB F DES DES C ADD Y AG IY GN LD --- Ml DES PD DA Rl HRO M 004

End of Chapter

Dispatching



Chapter 5
MV/1 QOOO Microcode Macroassembler

The first section of this chapter outlines the macroassembler constructs. The second
section provides examples of assembled microprogram segments.

The Macroassembler

The nlacroassembler makes your job easier by letting you code at a higher level than
individual micro-orders. We use the following syntax conventions to describe the
macroassembler:

Symbol Name

[ ] Square
brackets

< > Angle brackets

Equals

Double equals

Ellipsis

Meaning

Enclose optional elements.

Enclose non-terminal elements.

Precedes a data destination.

Precedes a data source.

Indicates repeatable element.

{ }

D

Braces

definition

Box

Indicate a choice of the enclosed elements. When
several elements are listed on successive lines, this
also indicates a choice among the elements.

"Is defined as"

Encloses micro-order equivalents of macroassembler
constructs. The micro-order codings are always
presented immediately following the terminal
construct from which they result.

Each macroassembler command consists of one or more constructs and produces a single
microinstruction. A macroassembler command has the following syntax:

<macroassembler_construct» ... ;

Comrnents have a percent sign (%) at the beginning of the line, or are enclosed in 1* ... */.
The second type of comment delimiter can be nested to any level.

The Macroassembler



5-2

CPM Bus

<CPM dest>

<FPU_reg>
<FPU_reg>

MEM_WRlTE
EXECUTE_DATA
FPSR
FP_LOW ( <FPU_reg> )
FP_HlGH ( <FPU_reg>
ALU ( <ALU_reg> )
TREG
SPAD ( <literal>
SPAD ( SPAR )
AG ( <AG_reg> )
AG_lF_TRUE ( <AG_reg>

<CPM src>

ALU ( <ALU_reg> )
CARRY_lN_ALU ( <ALU_reg>
lY
AY
MEM READ
FP_HIGH
FP_LOW
FPSR
FP_STATE
ALL_ONES

Notes:

MEMC:W
MEMC:A
FRG:LFS
FL:ML J FCW
FL:MH J FCW
lL :M J lB
{GEN:REG1 JATU:ATU1 } :LT
lL: {NM M}JSPAD:WCJCNST
lL: {NM M}JSPAD:WS
AL:M J AB
AL:C J AB

CPMS: lA J lA
CPMS:lAJlAJGEN:REGO:FCY
CPMS:lY
CPMS:AY
CPMS:MM J MEMC:R
CPMS:HF J lA
CPMS:LF J lA
CPMS:HF J FRG:SFS
CPMS:HF J FRG:SST
CPMS:N

<FPU __ reg> is a mnemonic specifying one of 16 FPU registers (see "Floating-Point ALU
Micro-orders" in Chapter 3).

<ALU __ reg> is a mnemonic specifying one of 16 ALU registers (see "Integer ALU
Micro-orders" in Chapter 3).

In SPAD ( <Ii teral> ), the literal is a mnemonic that specifies the scratch pad address.

CPM Bus



5-3

CPD Bus

The two CPD Bus constructs are CPD and PDR. The CPD construct implies PDR should not
be loaded~ i.e" the macroassembler codes {GEN:REGO ATU:ATUO} :NPDR. The only
excepltion to this is CPD= = ZERO. The PDR construct does not code NPDR. In addition, the
PDR construct can manipulate the reference bits. The only other difference between the two
constructs is that CPD = = ZERO codes CPDS:N and PDR = = ZERO codes CPDS:ZER.

<CPD dest> , '­, ,-

FLAGS_INVERTED
IO_CONTROLLER
MICRO_STACK_INVERTED
CONSOLE_DATA
CASE_DATA
REF _,MOD_BITS
SBR_,INVERTED
TRANSLATION_CACHE
IP_STATE

<CPD src>

TREG
LAR
IP_STATE
ATU_.STATE
SEQUENCER_STATE
IO_DATA
CONSOLE_DATA
CONSOLE_INSTRUCTION
PC
PC_OF_EXECUTION
RETURN_PC
IY
ATU __ DIAGNOSTICS
ZERO
AG ( <AG_reg> )

Notes:

GEN:REGO:LFLG
ATU:ATUO:SIO
NAC:PCPD
GEN:REGO:CDW
GEN:REG1 :LD
ATU:ATUO:WRRM
ATU:ATUO:WSBR
ATU:ATUO:OPTA
ATU:ATUO:LIPS

CPDS:TRG
CPDS:LAR
CPDS:IPS
CPDS:ATS
CPDS:USS*
CPDS:IOC
CPDS:CDR
CPDS:CIR
CPDS:PC
CPDS:PCX
CPDS:PCN
CPDS:IY
CPDS:ATD
CPDS : {ZER, N}
CPDS:AGA, AA

* SEQUENCER_STATE sources MICRO_STACK and FLAGS in true sense, and CASE_DATA in
inverted sense.

<AG._reg> is a mnemonic specifying one of 16 AG registers (see "Address Generator
Micro-orders" in Chapter 3).

CPD Bus



5-4

<CPD_dest> : : = See the preceding section.

<EIGHT REF BITS ORed WITH>

<CPD_src> : : = See the preceding section.

ATU: ATUO : RSRF'

Memory Starts and Address Generator Operations

AY [ = <AG dest> ] ...

<AG dest>

<AG src>

CRE
RES'TORE PC
LAR
PC
ATU STATE
<CPM_dest>

<AG_,src> :: =

ATU:ATUO:LCRE
ATU:ATUO:LIPS
ATU:ATUO:LLAR
ATU:ATUO:IPST
ATU:ATUO:LATS
See "CPM Bus," above.

PASS ( <AGB_src> )
<AGB_src> {+ -} A«AG_reg»

<AGB src>

CNST ( <literal>
LAST_LA
B ( <AG_reg> )

Note:

AGB:C) CNST:<literal>
AGB:L
AGB:B) AB:<AG_reg>

In CNST ( <Ii teral> ) ) the literal is a hex number (OO-FF).

<AG_reg> is a mnemonic specifying one of 16 AG registers (see "Address Generator
Micro-orders" in Chapter 3).

Memory Starts and Address Generator Operations



5-5

<adr._opt> .. -

[ <byte/word> ]

<byte/word>

{ATU)GEN}:REG1 :AC I ]

WITH_BYTE_ADDRESSING
WITH_WORD_ADDRESSING

WIDE_JUMP
NARROW_JUMP
IP_TRANSLATION
READ_DOUBLE
READ_WORD
READ_BYTE
WRITE_DOUBLE
WRITE_WORD
WRITE_BYTE
PER_IP_DECODE
PREVIOUS_REFERENCE
OBJECT_REFERENCE
DBL_WORD_ASSEMBLY
CACHE_BLOCK_FLUSH

ATU:ATUO:BYTE
ATU:ATUO:WORD

ATU:ATUO:IPST) MEMS:RD
ATU:ATUO:IPST) MEMS:RW
ATU:ATUO:ICAT) MEMS:RW
MEMS:RD
MEMS:RW
MEMS:RB
MEMS:WD
MEMS:WW
MEMS:WB
MEMS:S@
MEMS:S@
ATU:ATUO:OPTA) MEMS:S@
ATU:ATUO:CMO) MEMS:RW
ATU:ATUO:CMO) MEMS:RD

~'U:ATUO:CMO) MEMS:WW) AA:O) AB:O) AGB:B) AOP:SUB

~~GB:D) AOP:EFA) MEMS:S@ I

Memory Starts and Address Generator Operations



5-6

<PTE level>

FIRST_PAGE_TABLE_ENTRY
SECOND_PAGE_TABLE_ENTRY

Memory Completion

ABORT_MEMORY
READ_MEMORY*
COMPLETE_JUMP
COMPLETE_FLUSH
COMPLETE_TRANSLATE**

Notes:

ATU:ATUO:RSBR) MEMS:RD
ATU:ATUO:LPTA) MEMS:RD

MEMC:A
MEMC:R
MEMC:X
MEMC:R
MEMC:X

Normal reads and writes are handled by <CPM_dest>.

* READ _MEMORY does NOT source CPM.

** COMPLETE_TRANSLATE is for completion of ICATs.

ALU Operation Constructs

IY Bus

<alu dest>

SPA:R
SPAR_TABLE_OFFSET
ABS_VALUE«ALU_reg»
PDR
CASE_DATA
<CPM_dest>

*Note:

GEN:SPAD:LS
GEN:REGO:SPY4) SPAD:LS
FIX:LOAD:AV
CPDS:IY
CPDS:IY) GEN:REG1 :LD*
See "CPM Bus," above.

CASE_DATA will load PDR unless NO LOAD_PDR is coded.

<ALU_reg> is a mnemonic specifying one of 16 ALU registers (see "Integer ALU
Micro-orders" in Chapter 3).

IY Bus



5-7

<alu src>

<alu __ op>
<alu_IY_op> «alu_op»
<hex_shift_op> «shft_mag>, <IR_src> )
<extnd_op> «IR_src»
TRANSLATION_OF <ALU_reg> FOR <edit_type> IN_BOTTOM_NIBBLE_OF <alu_op>

Note:

<ALU __ reg> is a mnemonic specifying one of 16 ALU registers (see "Integer ALU
Micro·-orders" in Chapter 3).

<IS src> <iop> <IR src>

<IS src> .. - A ( <ALU_reg>
<ID_src>

<ID src>

B ( <ALU_reg> )
SPAD ( <literal>
SPAD ( SPAR )
CNST ( <literal>
PDR
SRC_POINTER
MICROSTATE
ZERO

Notes:

ID:BR
ID:SC
ID:SS
ID:CN
ID:PD
ID:AS
ID:MS
ID:ZR

In SPAD ( <Ii teral> ), the literal is a mnemonic that specifies the scratch pad address.

In CNST ( <literal> ), the literal is a hex number (OO-FF).

<ALU_reg> is a mnemonic specifying one of 16 ALU registers (see "Integer ALU
Micro-orders" in Chapter 3).

IY Bus



5-8

<iop> .. -

+
+1+

-1­
AND
XOR
OR
NOT AND

<IR src>

IOP:ADD
IOP:CAD) 'Add with carry in'
IOP:CSR
IOP:SMR) 'Subtract without carry'
IOP:AND
IOP:XOR
IOP:OR
IOP:ANC) 'AND complement in

reverse direction'

<IS __ src>
CPD __ ZERO
AG( <AG_reg>
LAR
TREG
CPD
PC_OF EXECUTION
RETURN_PC
PC

See"ALU Test"
RS: {CA) CD}) CPDS:N
RS: {CA) CD}) CPDS:AGA*
RS: {CA) CD}) CPDS:LAR*
RS: {CA) CD}) CPDS:TRG*
RS: {CA) CD}
RS: {CA) CD}) CPDS:PCX**
RS: {CA) CD}) CPDS:PCN**
RS: {CA) CD}) CPDS:PC**

* AG) LAR) and TREG will cause PDR to load unless NO_LOAD_PDR is coded. CPD_ZERO will
not load PDR.

** {ATU) GEN} : XTND is coded.

<AG __ reg> is a mnemonic specifying one of 16 AG registers (see "Address Generator
Micro-orders" in Chapter 3).

BIT_.SHIFT _RIGHT
BIT_SHIFT_RIGHT WITH_1
BIT_.SHIFT _LEFT
BIT_SHIFT_LEFT_WITH_1
BYTE_SWAP
APPEND_PSR_TO

IY Bus

IY:BRO
IY:BR1
IY:BLO
IY:BL1
IY:BSW
IY:PSR



<hex._shift_op>

HEX_SHIFT_RIGHT
HEX_SHIFT_LEFT
HEX_ROTATE_RIGHT

<shift_mag> ::=

IY:HRO
IY:HLO
IY:HRT

5-9

<IR src> See "<alu_src>," above.

WORD_SWAP
WORD_SIGN EXTEND
WORD_ZERO_EXTEND
BYTE_SIGN_EXTEND

<edit_type>

SIGN_OVERPUNCH_BYTE
DIGIT
LOW_NIBBLE_DIGIT
HIGH_NIBBLE_DIGIT

ALU Test

IY:HRT) IOP:R4
IY:WSX
IY:WZX
IY:BSX

CNST:VSO
CNST:VDB
CNST:VDL
CNST:VDH

This construct allows use of the ALU without sourcing the result to the IY Bus:

<alu._op> .. - See "<alu_src>," above.

ALU Test



5·10

Loading SPAR

This construct loads SPAR with an address from the constant field:

[=GEN:REGO:SPCN) GEN:SPAD:LS) CNST:<literal> I
Note:

<literal> is a hex number (OO-FF).

Edit PROM

This construct specifies an edit PROM test generation only (See CNST: Commercial
Translation) :

<prom_test> .. -

SIGN_OVERPUNCH_BYTE
DIGIT
LOW_NIBBLE_DIGIT
HIGH_NIBBLE_DIGIT
CHARACTER
SIGN
LOW_NIBBLE SIGN
COMMERCIAL_SIGN
CPU_DEVICE
IO_SKIP
ION_FLAG_CHANGE

Note:

CNST:VSO
CNST:VDB
CNST:VDL
CNST:VDH
CNST:VCB
CNST:VSB
CNST:VSL
CNST:CSB
CNST:CPUD
CNST:SKPT
CNST:IONF

<ALU_reg> is a mnemonic specifying one of 16 ALU registers (see "Integer ALU
Micro-orders" in Chapter 3).

Edit PROM



5-11

ID Bus

This construct is for use of the ID Bus (when not required by an <alu_op » and for loading
the PSR:

<ID dest>

DES_POINTER
SRC_POINTER
PSR

<ID src>

IR

GEN:REGO: {LDAD)LDSD}
GEN:REGO: {LDAS)LDSD}
FIX:COVS:LPSR

See "<alu_src>," above.

This construct specifies an IR (R Bus) source for the IR-SIGN test:

<IR_src> :: = See "<alu_src>," above.

FPU Operations

FD Bus

<FPU dest>

FPU ( <FPU_reg> )
DPR
WR

FL:D) FCW:<FP_reg»
FRG: (LWD IDV})
FRG:{LWR LWM LWD IDV})

FD Bus



5-12

<FH. src>

ROUND_BIT
A( <FPU_reg> ) [WITH_DGD ]
SELECTED_A ( <FPU_reg» <FPU_reg>
DPR
MULTIPLIER

<fop> .. -

+ FOP:TAD
FOP:TSB

@+ FOP:ADD
@- FOP:SUB

<FS src>

FR:RB
FR:FA)IA) [FRG:IDV]
FR: FA) IA) IB
FR:DR
FR:MP

ZERO
B( <FPU_reg>
PRESCALED_WR
WR_RIGHT
NORMALIZED_WR
WR_LEFT

Note:

FS:ZR
FS:FB)IB
FS:RS
FS:RS
FS:LS
FS:LS

<FPU _reg> is a mnemonic specifying one of 16 FPU registers (see "Floating-Point ALU
Micro-orders" in Chapter 3).

FA and FB Buses

These constructs source FA and FB from the register file without sourcing on FR and FS:

1. FA = = A( <FPU-reg> ) (IA)

2. FB = = B( <FPU-reg> ) (IB)

3. FPU-B-SELECT-DURING-SECONDJIALF = = B( < FP-reg> ) (FCW)
(This construct se,lects FB data during division cycles.)

Note,,·

<FPU_reg> is a mnemonic specifying one of 16 FPU registers (see "Floating-Point ALU
Micro-orders" in Chapter 3).

FA and FB Buses



5-13

WR ==

PRE SCALE_OPERAND
QUOTIENT
A ( <FPU_reg>
B ( <FPU_reg>
ZERO

Notes:

FWR:R, RM:FL, FLT:SCNT:CMP
FWR:Q, FRG:LWD
FWR:R, FR:FA, IA
FWR:S, FS:FB, IB
FWR:S, FS:ZER

Loading WR from FD is specified with the FD = WR == construct defined for <FPU_op>'s.

<FPU_reg> is a mnemonic specifying one of 16 FPU registers (see "Floating-Point ALU
Micro-orders" in Chapter 3).

Sign and Exponent Control

A_SIGN
FAD
NEG_FAD
ZERO
A_XOR_B

FLT:SGN: {SA LAB TRN TRI}
FLT:SGN:MOV
FLT:SGN:NEG
FLT:SGN:ZER
FLT:SGN:XOR

~T:SGN: {LAB TRN TRI} I

EWR
FA
EWR-64
EWR+64
EWR-MAG
FA-FB
EWR+MOF
FA+MOF
EWR+MAG+MOF
FA+FB

FLT:EXP:N
FLT:EXP:LAX
FLT:EXP:S64,FX:X64
FLT:EXP:A64,FX:X64
FLT:EXP:SNM
FLT:EXP:SUB
FLT:EXP:ACW
FLT:EXP:ACA
FLT:EXP:ACN
FLT:EXP:ADD

Sign and Exponent Control



5-14

Shift Count

EXPONENT
PRESCALE COMPARE
FIRST_NIBBLE_ZERO DETECT
LEADING_ZERO_DETECT
DIVIDE_PRE SCALE_DETECT
CNST ( <literal> )

Note:

FLT:SCNT:LEF
FLT:SCNT:CMP
FLT:SCNT:FNZ
FLT:SCNT:LZD
FLT:SCNT:DVP
FLT:SCNT:LCN) IY:<literal>

<Ii teral> is a hex number <a-F). Use a positive value for a right shift, or a twos
complement value for a left shift. For example: E= right-shift 14 digits, or left-shift 2 digits.
Use the symbols RO through R15 and LO through L15 to specify the literal.

[ FLT: SCNT : LZD

[ FLT: SCNT: LZD

Multiply Control

X == A«FPU_reg») Y B«FPU_reg») Y SELECT {O to 7}

[ FRG:LXY) FR:FA) IA) FS:FB) IB) IY:<Y_select>

Y B«FPU_reg») Y SELECT {O to 7}

[ FRG:LY) FS:FB) IB) IY:<Y_select>

Notes:

<Y __ select> is a hex number (0-7) specifying one of eight bytes of the Y operand. Y_SELECT
= 0 gives the most significant byte of Y.

Multiply Control



5-15

The above two constructs must be coded in the order shown.

<FPU_reg> is a mnemonic specifying one of 16 FPU registers (see "Floating-Point ALU
Micro-orders" in Chapter 3).

FRG:LWM

FPU State

FRG:UFS

RESTORE_STATE_WlTH A«FPu_reg»] FRG:LST, lA, FLT:SCNT:RST l
Note:

<FPU_reg> is a mnemonic specifying one of 16 FPU registers (see "Floating-Point ALU
Micro-orders" in Chapter 3).

Divide Control

DGD FS GUARD DIGITS FRG:LGD

GEN" Randoms

ACSR (SRC Register Pointer) Randoms

INCREMENT_SRC_POINTER
DECREMENT_SRC_POINTER
POINT_SRC_TO_E
POINT_SRC_TO <register>

Note:

GEN:REGO:INCS
GEN:REGO:DECS
GEN:REGO:{FRCS,FRSD}
GEN:REGO: {LDAS,LDSD},ID:CN,CNST:<reg>

<rec:rister> is a mnemonic specifying one of 16 registers.

ACSR (SRC Register Pointer) Randoms



5-16

ACDR (DES Register Pointer> Randoms

INCREMENT_DES_POINTER
DECREMENT_DES_POINTER
POINT_DES_TO_F
POINT_DES_TO <register>

Notes:

GEN:REGO:INCD
GEN:REGO:DECD
GEN:REGO: {FRCD)FRSD}
GEN:REGO: {LDAD)LDSD})ID:CN)CNST:<reg>

See the ALU ( ID
Bus.

) construct earlier in this chapter for loading SRC and DES from the ID

<register> is a hex number (O-F) or register mnemonic specifying one of 16 registers.

Flag Manipulation

These macros use the CNST field to specify flag manipulation.

~EN:REGO:MFSO I

N
SET
CLEAR
TOGGLE

MFLG:N
MFLG:S
MFLG:C
MFLG:T

~EN:REGO:MFS1

~EN:REGO:AF46 I

Flag Manipulation



N
SET
CLEAR
TOGGLE
AND
OR
XOR
LOAD

AFLG:N
AFLG:S
AFLG:C
AFLG:T
AFLG:A
AFLG:O
AFLG:X
AFLG:L

5-17

~N:REGO:AF57

Skips

<skp_condition>

ALC_.RESULT
FALSE_TEST
ALU_.CRY=1
ALU_.CRY=O
IS>=:IR
IS<IR
SIGNED IS>=IR
SIGNED_IS<IR
ALU=:O
ALU<>O

FIX:COVS:ALC
GEN:REGO:SKFT
GEN:REGO:WSKP) CNST:CRY
GEN:REGO:WSKP) CNST:NCRY
GEN:REGO:WSKP) CNST:CRY
GEN:REGO:WSKP) CNST:NCRY
GEN:REGO:WSKP) CNST:SGE
GEN:REGO:WSKP) CNST:NSGE
GEN:REGO:WSKP) CNST:FZR
GEN:REGO:WSKP) CNST:NFZR

Mislcellaneous Randoms (N'PDR and XTN'D)

NO_LOAD_PDR I {GEN:REGO)ATU:ATUO}:NPDR

(GEN:REGO) ATU:ATUO}:XTND

Miscellaneous Randoms (NPDR and XTND)



5-18

AT"U Randoms

TURN_ATU_ON
TURN_ATU_OFF
SET_IFLUSH
RESET_8_REF_BITS*
ENABLE_INTERRUPTS
DISABLE_INTERRUPTS
DISABLE_INTERRUPTS ONE_INSTRUCTION**
RESET_ESR
PURGE_THE_ATU_CACHE
DEFER_ON_FALSE_TEST
CPA ==OBJECT_PAGE_TABLE ADDRESS
CPA ==LOW_ORDER_PAGE_TABLE_ADDRESS

Note:

* This random forces data on top of CPD < 24-31 >.

** Do not code during IPOP.

FIX Randoms

ATU:ATUO: {AON J RSRF}
ATU:ATUO:AOFF
ATU:ATUO:IPFL
ATU:ATUO:RSRF
ATU:ATUO:ION
ATU:ATUO:IOFF
ATU:ATUO:DISI
ATU:ATUO:LCRE J ATU1 :AC
ATU:ATUO:PRGA
ATU:ATU1 :DF
ATU:ATUO:OPTA
ATU:ATUO:LPTA

CARRY_IN_IS_CARRY
CARRY SIGN_OF «IR_src»
CARRY ZERO
CARRY ONE
CARRY ALU_CRY
CARRY ALC CRY
CLEAR OVR
UPDATE_OVR
CLEAR_OVK
SET __ OVK
USE __ 16_BIT TESTS

XC random mode: RM:FIX J CIB:C
FIX:COVS:LDCY
FIX:COVS:CLRC
FIX:COVS:SETC
FIX:COVS: {LCRY J LOVC}
FIX:COVS:ALC
FIX:COVS:COVR
FIX:COVS:LOVC
FIX:COVS:COVK
SET_OVK
FIX:LOAD:NA

<IR src>

FIX Randoms

See "<alu__ src>," above.



N"ext Address Sequence

Condiltional Address Generation

5-19

I NAC:{CJMP CABT} I
INAC:CABTIJ

CALL
CASE_8_INTO
CASE_4_INTO
CASE_ATU_INTO
RETURN_ELSE_GOTO
RETURN_ELSE_POP_AND GOTO
RESTORE_ELSE_GOTO

Note:

NAC:CJSR
NAC:CDSP)DSR:E
NAC:CDSP)DSR:F
NAC:CDSP)DSR:A
NAC:CRTN
NAC:TWB
NAC:CRST

for a listing of <test_cond>, see "Test Definitions", below.

Unconditional Address Generation

GOTO
CALL
CASE_8_INTO
CASE_4_INTO
CASE.:_ATU_INTO
CALL_CASE_8_INTO
CALL_CASE_4_INTO
CALL_CASE_ATU_INTO
POP __ AND _GOTO
PUSH
PUSH_CPD_AND GOTO
GOTO_TOS_AND_PUSH

Note:

NAC:LEAP
NAC:LSR
NAC:DSPA)DSR:E
NAC:DSPA)DSR:F
NAC:DSPA)DSR:A
NAC:DSPR)DSR:E
NAC:DSPR)DSR:F
NAC:DSPR)DSR:A
NAC:LPOP
NAC:PUSH
NAC:PCPD
NAC:TPSH

<full_address> is a symbolic address.

Unconditional Address Generation



5-20

Pseudo-unconditional Address Generation

RETURN
POP __MICRO STACK
RESTORE
RESTORE_WITH_EVEN PARITY

Test Definitions

Microsequencer Tests

Macro
TRUE
FALSE

CPD<31>=1
CPD<31>=O
MICRO_STACK EMPTY
INTERRUPT_PENDING
IO_BUSY
INSTRUCTION_READY

XCTED_INSTRUCTION
ROUNDING

FLAGO=1
FLAGO=O

FLAG1=1
FLAG1=O
FLAG2=1
FLAG2=O

FLAG3=1
FLAG3=O

FLAG4=1
FLAG4=O

FLAG5=1
FLAG5=O
FLAG6=1
FLAG6=O

FLAG7=1
FLAG7=O

Test Definitions

NAC:CRTN)TSEL:TRUE
NAC:CABT)TSEL:FALSE
NAC:CRST)TSEL:TRUE
NAC:CRST)TSEL:TRUE) GEN:REGO:EPAR

TSEL Micro-order
TRUE

NTRUE

CPD31
NCPD31

USMT
INTR
lOB
IVLD

XCTF
RND

FLGO
NFLGO

FLG1
NFLG1

FLG2
NFLG2

FLG3
NFLG3

FLG4
NFLG4

FLG5
NFLG5

FLG6
NFLG6

FLG7
NFLG7



ALU Test Conditions

Macro

IY<28>=1
IY<28>=0

IY<29>=1
IY<29>=0

IY<30>=1
IY<30>=0

IY<31>=1
IY<31>=0
ID<31 >=1
ID<31>=0

ID_SIGN=1
ID_SIGN=O

SRC=DES
SRC<>DES

INTERRUPT RESUME

SIGN_OVERPUNCH_BYTE
DIGIT
LOW_NIBBLE_DIGIT
HIGH_NIBBLE_DIGIT
CHARACTER
SIGN
LOW_NIBBLE SIGN
COMMERCIAL_SIGN
CPU_DEVICE
IO_SKIP
ION_FLAG_CHANGE
ALU<31 >=1
ALU<31 >=0

ALU_NIBBLE CRY=1
ALU_NIBBLE_CRY=O

IR_SIGN=1
IR_SIGN=O

IY<0>=1
IY<O>=O
BYTE_COUNT+1=0
BYTE_COUNT+1<>0

HEX_COUNT+1=0
HEX_COUNT+1<>0

ALU_CRY=1
ALU_CRY=O

TSEL Micro-order

Y28
NY28

Y29
NY29

Y30
NY30

Y31
NY31

D31
ND31

DSGN
NDSGN

COMP
NCOMP

IRES

COM2
COM2
COM2
COM2
COM1
COM1
COM1
COM1

lOT
lOT
lOT
F31

NF31

CRY28
NCRY28

RSGN
NRSGN

YO
NYO

CNT8
NCNT8

CNT4
NCNT4

CRY
NCRY

5-21

Test Definitions



5-22

The next seven tests assume that a twos-complement subtract has been performed on unsigned
numbers during the previous cycle.

IS>=IR CRY
IS<IR NCRY

ALU - SIGN=1 FSGN
ALU_SIGN=O NFSGN

OVERFLOW OVF

ALU=O FZR
ALU<>O NFZR

The next four tests assume that a twos-complement subtract has been performed on signed
numbers during the previous cycle.

SIGNED_IS>=IR
SIGNED_IS<IR

CARRY=1
CARRY=O

ATU Test Conditions

Macro

INDIRECT

RING=O
RING<>O
INWARD_REFERENCE

LA<ESR
LA>=ESR

LA>CRE
LA<=CRE
LA=CRE
LA<>CRE

LA<CRE
LA>=CRE

CACHE_BLOCK X
ATU_PURGING
VALID_PTE
VALID_SBR

Test Definitions

SGE
NSGE

CRRY
NCRRY

TSEL Micro-order

INDR

RNGO
NRNGO

RMAX

LESR
NLESR

GCRE
NGCRE

ECRE
NECRE

LCRE
NLCRE

ATON
NATON

CBLK
PRGB
VPTE
VSBR



VALIDITY_BIT=1
VALIDITY_BIT=O

FPU Test Conditions

Macro

FR=FS
FR<>FS

FR<FS
FR>=FS

SIGNED FR=FS
SIGNED_FR<>FS

SIGNED_FR>FS
SIGNED_FR<=FS

SIGNED_FR<FS
SIGNED_FR>=FS

MANTISSA_CRY=1
MANTISSA_CRY=O

EXPONENT_CRY=1
EXPONENT_CRY=O

FF8=1
FF8=O

VLD
NVLD

IXPC

TSEL Micro-order

UAEB
NUAEB

UALB
NUALB

SAEB
NSAEB

SAGB
NSAGB

SALB
NSALB

FCRY
NFCRY

ECRY
NECRY

FF8
NFF8

5-23

Test Definitions



5-24

Examples

This section contains an example of unassembled MV110000 microcode macros and a number of
examples of assembled microcode.

Unassembled Example

This example shows the unassembled instructions that produce a dispatch table. This is the same
table that was used as an example in Chapter 4. The dispatch table will also appear among the
assembled examples.

% **************************************************************
% BIT INSTRUCTION DISPATCH TABLES

% **************************************************************

% WCOBTAB - Used by WCOB) COB

% Dispatch table is based on the number of bits set (which is
% added to DES) .
% AG: CPM <- DES <- DES + CONSTi Load DSP REGi
% ALU: CPD <- PDR <- RSHIFT(PDR)i DES <- CPM
% F bus <- PDR AND M1 for FZR test

% Location 0 of dispatch table checks for completion of instruction
WCOBTAB: ATTEMPT_NEXT_EFA) IF ALU=O RETURN_ELSE_GOTO WCOB1i

AY = AG(DES) = ALU(DES) == CNST(01) + A(DES))
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1) PDR))

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST(01) + A(DES))
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1) PDR))

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST(02) + A(DES))
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1) PDR))

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST(01) + A(DES))
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1) PDR))

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST(02) + A(DES))
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1) PDR))

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST(02) + A(DES))
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1) PDR))

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

Unassembled Example



5-25

AY AG(DES) = ALU(DES) == CNST(03) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST(01) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST(02) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1) AND PDR)
CASE_4~INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST(02) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1). AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST (03) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST (02) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST (03) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST (03) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

AY AG(DES) ALU(DES) == CNST (04) + A(DES)
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( R1 ) PDR) )

ALU_TEST == A(M1) AND PDR)
CASE 4 INTO WCOBTABi

Unassembled Example



5-26

Assembled Examples

The following examples show typical MV110000 microcode in assembled form. The assembler
commands precede the assembled microword in each case.

Proprietary information of Data General Corporation

55B .EJECT;
56B .FT 1 "TABLES Source File Cycle 1 18-AUG-82 15:24:34 RGG"
57B
58B
5 9B / *------------------------------.----------------------------------------+
60B* I I
61B* I Dispatch table for WCOB instruction, which appears in I
62B* I an example below. I
63B* I I
6 4B* +----------------------------------------------------------------------* /
65B
66B
67B %

68B % *** *** * * * ** * **** *** ** ** ** * ** * **** * * * **** **** ****** ***** *** '* ***
69B %
70B % BIT INS'I'RUC'fJ ;jN DISPATCH TABLES
71B %
72B % *** ** * * ****** * * * * * ** * '* *** * ** *** * '* * * * * * * * * ******* * *** *** **** * * *
73B %
74B %
75B %
76B % WCOBTAB - Used by WCOB, COB
77B %
78B % Dispatch table is based on the number of bits set (which is
79B % added to DES).
80B % AG: CPM <- DES <- DES + CONST; Load DSP REG;
81B % ALU: CPO <- PDR <- RSHIFT(PDR); DES <- CPM
82B % F bus <- PDR AND Ml for FZR test
83B %
84B % Location 0 of dispatch table checks for completion of instruction

--OOOO--WCOBTAB: ATTEMPT_NEXT_EFA, IF ALUcO RETURN_ELSE_GOTO WCOBl;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY
CRTN FZR WCOBI D EFA S@

IL FR FS FOP W FCW FL FRG X

--DFVs: addr is WCOBI (003B)
86B

--0001-- AY .. AG(DES) .. ALU(DES) .- CNST(Ol) + A(DES),
88B IY • PDR - CASE_DATA ... HEX-SHIFT_RIGHT( Rl, PDR),
89B ALU_TEST ... A (Mll AND PDR,
90B CAS~4_INTO WCOBTAB;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBT-"B F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 01

Rl
--DFVs: addr is WCOBTAB ( 0000)

91B
--0002-- AY • AG(DES) .. ALU(DES) ... CNST (01) + A(DES),

93B IY .. PDR • CASE_DATA .... HEX_SHIFT_RIGHT ( Rl, PDR),
94B ALU_TEST •• A(Ml) AND PDR,
95B CASE_CINTO WCOBTAB;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB 10 RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 01

Rl
--DFVs:

96B
--0003-­

98B
99B

addr is WCOBTAB (0000)

AY • AG(DES) • ALU(DES) "'. CNST(02) + A(DES),
IY • PDR .. CASE_DATA •• HEX_SHIFT_RIGHT( Rl, PDR),

ALU_TEST •• A (Mll AND PDR,

SAMPLES
TABLES
UASM

Instruction Set Microcode
Source File

00.10.00 0004 - 01

Rev 1
Cycle 1

09-DEC-82 10: 47: 39 RGG
IB-AUG-82 15:24:34 RGG

Assembled Examples



1 .EJECT;
2A .TITLE "Widgeon Microcode: SAMPLES Code Group"
3A ;
4B .BEGIN;
5B .RD 1 "Proprietary information of Data General Corporation";
6B .HD 2 "";
7B .RADIX 16,
8B .FT 2 "SAI1PLES Instruction Set Microcode Rev
9B

lOB
11B

••
•

09-DEC-82 10:47:39 RGG"

5-27

SAMPLES

UASM 00.10.00

Instruction Set Microcode

0001 - 01

Rev 09-DEC-82 10:47:39 RGG

Proprietary inf.ormation of Data General Corporation

/*----------------------------------------------------------------------+
I I
I External definitions for Widgeon microcode samples. I
I I
I Some of the samples reference routines that, for the sake I
I of brevity, are not worth including in the samples. The I
I number of such references in the collection will be kept I
I to a minimum. I
I I
+--- --._---- ------- --------------- ---- - - ----- - ------- - - - - - - - - - - - -- - - - --- */

12B
13B*
14B*
15B*
16B*
17B*
18B*
19B*
20B*
21B*
22B
23B
24B
25B
26B
27B
28B
29B

•
•
•

• EXTERNAL

.RADIX 16;

NSTILOVERFLOW,
WSTILOVERFLOW,
PROTECTION_FAULT,
PRIVILEGE_PROTECTION,
RESTARTABLE_INTERRUPT ;

SAMPLES

UASM 00.10.00

Instruction Set Microcode

0002 - 01

Rev 09-DEC-S2 10:47:39 RGG

Proprietary information of Data General Corporation

/ * '0' +

I I
I A note regarding style: I
I I
I Having been drawn from the sources, the samples display I
I a variety of documentation and coding styles. These I
I variations are preserved mainly to minimize the task of I
I compiling the samples. I
I I

+----------------------------------------------------------------------*/

/*----------------------------------------------------------------------+
I
I Widgeon Microcode Samples
I
I This collection of sample microcode is taken directly from
I Widgeon sources. Each selection is, as far as practical,
I the code for an entire macro instruction. Selections are
I presented in order of increasing complexity.
I I
+---------------------------------------------------------------------- */

30B
31B
32B
33B
34B
35B*
36B*
37B*
38B*
39B*
40B*
41B*
42B*
43B*
44B
45B
46B*
47B*
48B*
49B*
50B*
51B*
52B*
53B*
54B*

•
•
•

.EJECT;

.FT 1 "SAMPLES Source File Cycle 1 lS-AUG-82 15:24:34 RGG"

SAMPLES
SAMPLES
UASM

Instruction Set Microcode
Source File

00.10.00 0003 - 01

Rev
Cycle

09-DEC-82 10: 47: 39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-28

Proprietary information of Data General Corporation

55B .EJECT;
56B • FT 1 "TABLES Source File Cycle 1 18-AUG-82 15: 24: 34 RGG"
57B
58B
5 9B /*----------------------------------------------------------------------+
60B* I I
61B* I Dispatch table for WCOB instruction, which appears in I
62B* I an example below. I
63B* I I
6 4B* +--------------------------------------------------- - ------------------* /
65B
66B
67B %
68B % * ** *** *** ** * * **** ** * * * *** ** ** **. * *** * ********** **** *** **** ** **
69B %
70B % BIT INSTRUCTION DISPATCH TABLES
7lB %
72B % *** *** *** *********** *** **. * * ****** **** *** *** ** *** ** * * * * * **** **
73B %
74B %
75B %
76B % WCOBTAB - Used by WeOB, COB
77B %
78B % Dispatch table is based on the number of bits set (which is
79B % added to DES) •
80B % AG: CPM <- DES <- DES + CONST; Load DSP REG;
81B % ALU: CPD <- PDR <- RSHIFT(PDR); DES <- CPM
82B % F bus <- PDR AND Ml for FZR test
83B %
84B % Location 0 of dispatch table checks for completion of instruction

--OOOO--WCOB~rAB: ATTEMPT_NEXT_EFA, IF ALU"O RETURN_ELSE_GOTO WCOBl;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY
CR~rN FZR WCOBI D EFA S@

IL FR FS FOP W FCW FL FRG X

--DFVs: addr is WCOBI (003B)
86B

--0001-- AY .. AG <DES) .. ALU(DES) .... CNST (01) + A<DES),
88B IY .. PDR .. CASE_DATA .... HE>LSHIFT_RIGHT ( Rl, PDR) ,
89B ALU_TEST .. - A(Ml) AND PDR,
90B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 01

Rl
--DFVs: adclr is WCOBTAB ( 0000)

91B
--0002-- AY .. AG(DES) .. ALU(DES) ..m CNST (01) + A<DES),

93B IY .. PDR .. CASE_DATA .... HE>LSHIFT_RIGHT( Rl, PDR) ,
94B ALU_TEST .... A(Ml) AND PDR,
95B CASE-4_INTO WCOBTAB;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 01

Rl
--DFVs:

96B
--0003-­

98B
99B

adclr is WCOBTAB (0000)

AY .. AG(DES) .. ALU(DES) .... CNST(02) + A<DES),
IY .. PDR .. CASE_DATA"" HEX_SHIFT_RIGHT( Rl, PDR),

ALU_TEST .... A (Ml) AND PDR,

SAMPLES
TABLES
UASM

Instruction Set Microcode
Source File

00.10.00 0004 - 01

Rev 1
Cycle 1

09-DEC-82 10: 47: 39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-29

Proprietary information of Data General Corporation

100B CASE_4_INTO WCOBTAB;
OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB FOES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

Rl
--DFVs: addr i.s WCOBTAB ( 0000)

101B
--0004-- AY .. AG (DES) .. ALU(DES) ..= CNST(Ol) + AmES),

103B IY .. PDR = CASE_DATA == HEX-SHIFT_RIGHT( Rl, PDR),
104B ALU_TEST K= A(Ml) AND PDR,
105B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPO RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 01

Rl
--DFVs: addr i.s WCOBTAB ( 0000)

106B
--0005-- AY = AG(DES) = ALU(DES) ==' CNST(02) + A(DES),

108B IY = PDR .. CASE_DATA == HEX-SHIFT_RIGHT( Rl, PDR),
109B ALU_TEST =. A(Ml) AND PDR,
110B CAS~4_INTO WCOBTAB;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

Rl
--DFVs: addr i,s WCOBTAB ( 0000)

111B
112B

--0006-- AY = AG(DES) .. ALU(DES) K= CNST (02) + AmES),
114B IY .. PDR = CASE_DATA =.. HEX-SHIFT_RIGHT ( Rl, PDR),
115B ALU_TEST .... A(Ml) AND PDR,
116B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

Rl
--DFVs: addr i,s WCOBTAB (0000)

117B
--0007-- AY .. AG (DES) .. ALU(DES) ... CNST (03) + A(DES),

119B IY = PDR = CASE_DATA == HEX-SHIFT_RIGHT( Rl, PDR),
120B ALU_TEST •• A(Ml) AND PDR,
121B CAS~4_INTO WCOBTAB;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 03

Rl
--DFVs: addr is WCOBTAB (0000)

122B
--0008-- AY .. AG (DES) = ALU(DES) .K CNST (01) + AmES),

124B IY .. PDR = CASE_DATA .K HEX-SHIFT_RIGHT( Rl, PDR),
125B ALU_TEST .... A(Ml) AND PDR,
126B CAS~4_INTO WCOBTAB;

OP TSEL ADDRESS D M AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 01

Rl
--DFVs: addr is WCOBTAB (0000)

127B
--0009-- AY = AG (DES) .. ALU(DES) =.. CNST(02) + AmES),

129B IY • PDR .. CASE_DATA .... HEX-SHIFT_RIGHT( Rl, PDR),
130B ALU_TEST .... A (Ml) AND PDR,

SAMPLES Instruction Set Microcode Rev 1 09-DEC-82 10:47:39 RGG
TABLES Source File Cycle 1 18-AUG-82 15:24:34 RGG
UASM 00.10.00 OOO~ - 01

Assembled Examples



5-30

Proprietary information of Data General Corporation

131B CASE•.4_INTO WCOBTAB i
OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO R1 R2 IA IB 10 RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PO DA AND HRO M 02

R1
--DFVs: addr is WCOBTAB ( 0000)

132B
--OOOA-- AY " AG (DES) " ALU(DES) ". CNST (02) + A(DES),

134B IY " PDR - CASE_DATA •• HEX-SHIFT_RIGHT( R1, PDR),
135B ALU_TEST •• A(Ml) AND PDR,
136B CAS~4_INTO WCOBTABi

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO R1 R2 IA IB 10 RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD M1 DES PD DA AND HRO M 02

R1
--DFVs: addr is WCOBTAB ( 0000)

137B
--OOOB-- AY " AG (DES) .. ALU(DES) ... CNST(03) + A <DES) ,

139B IY " PDR " CASE_DATA ,,- HEX-SHIFT_RIGHT ( Rl, PDR),
140B ALU_TEST •• A(Ml) AND PDR,
141B CASE_4_INTO WCOBTABi

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FeW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD M1 DES PD DA AND HRO M 03

R1
--DFVs: addr is WCOBTAB ( 0000)

142B
--OOOC-- AY " AG(DES) - ALU<DES) ". CNST (02) + A<DES) ,

144B IY - PDR " CASE_DATA -" HEX-SHIFT_RIGHT ( Rl, PDR),
145B ALU_TEST ". A(Ml) AND PDR,
146B CAS~4_INTO WCOBTABi

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

R1
--DFVs: addr is WCOBTAB ( 0000)

147B
--OOOD-- AY = AG<DES) " ALU(DES) =" CNST (03) + A<DES),

149B IY " PDR = CASE_DATA =" HEX-SHIFT_RIGHT( Rl, PDR),
150B ALU_TEST .= A(Ml) AND PDR,
151B CASE_4_INTO WCOBTAB i

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO R1 R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 03

R1
--DFVs: addr is WCOBTAB ( 0000)

152B
--OOOE-- AY = AG(DES) .. ALU(OES) ... CNST(03) + A<DES),

154B IY " PDR " CASE-PATA ,,= HEX-SHIFT_RIGHT( Rl, PDR),
155B ALU_TEST =.. A (M1) AND PDR,
156B CAS~4_INTO WCOBTABi

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO R1 R2 IA IB ID RS lOP IY IL FR FS FOP W Few FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 03

Rl
--DFVs: addr is WCOBTAB ( 0000)

157B
--OOOF-- AY = AG <DES) = ALU<DES) ... CNST(04) + A<DES),

159B IY • PDR = CASE_DATA "" HEX-SHIFT_RIGHT( R1, PDR),
HOB ALU_TEST ,,= A(Ml) AND PDR,

SAMPLES Instruction Set Microcode Rev 09-DEC-B2 10:47:39 RGG
TABLES Source File Cycle 18-AUG-82 15:24:34 RGG
UASM 00.10.00 0006 - 01

Proprietary information of Data General Corporation

161B

--DFVs:

•
•
•

CAS E_4_INTO WCOBTAB i
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
DSPA WCOBTAB F DES DES C ADD Y AG IY GN

addr is WCOBTAB (0000)

Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FeW FL FRG X
LD M1 DES PD DA AND HRO M 04

Rl

SAMPLES
TABLES
UASM

Instruction Set Microcode
Source File

00.10.00 0007 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-31

Proprietary information of Data General Corporation

1628 .EJECT;
1638 .FT 1 "MEM Source File Cycle 1 18-AUG-82 15:24:34 RGG"
1648
1658
1668 / *-----..----------------------------------------------------------------+
1678* I
1688* I Memory references for the next macro instruction can be
1698* I started by the IP from decode information. In these two
1708* I examples, the completion of an IP initiated memory
1718* I reference is shown. The completion is generic, i.e. read
1728* I or write. The start instigated by the IP specified the
1738* I exact type of transfer to perform.
1748* I
1758* I Also shown here is the attempt of the next EFA on behalf
1768* I of the next executing macro instruction. This attempt must
1778* I be made in the last micro cycle of every macro instruction
1788* I The combination of the attempt and popping an empty micro
1798* I stack constitutes a macro instruction pop (IPOP).
1808* I
1818* +------..--- ----------------------------------------- -- -- ---------------* /
1828
1838
1848 %********
1858 % Load and Store Instructions: «L X><W N> E ><LDA STA>
1868 %
1878 % Perform load or store of AC pointed to by DES. IPOP.
1888 %********
1898

--0010--LWLDA:
--0010--XWLDA:
--0010--LNLDA:
--0010--XNLDA:
--0010--ELDA:
--0010--LDA: CPM = AG(DES) = ALU(DES) MEM_READ, ATTEMPT_NEXT_EFA, RETURN;

OP TSEL ADDRESS D AA A8 AG AOP AL ST CM CPM CPD RM RO Rl R2 IA 18 ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CRTN TRUE DES D EFA M S@ R MM DES M

--DFVs:
1968

--OOll--LWSTA:
--OOll--XWSTA:
--OOll--LNSTA:
--OOll--XNSTA:
--OOll--ESTA:
--0 Oll--STA:

OP
CRTN

CPM = MEM_WRITE == ALU(DES), ATTEMPT_NEXT_EFA, RETURN;
TSEL ADDRESS D AA A8 AG AOP AL ST CM CPM CPD RM RO Rl
TRUE D EFA S@ W IA

R2 IA 18
DES

ID RS lOP IY IL FR FS FOP W FCW FL FRG X

--DFVs:
2038
2048
2058 %********
2068 % Jump Instructions: W8R, LJMP, XJMP, EJMP
2078 %
2088 % Complete IPST. Go to IP_ALT WAIT.
2098 %********
2108

--0012--WBR:
SAMPLES Instruction Set Microcode Rev 09-DEC-82 10:47:39 RGG
MEM Source File Cycle 18-AUG-82 15: 24: 34 RGG
UASM 00.10.00 0008 - 01

Proprietary information of Data General Corporation

COMPLETE_JUMP, GOTO WAIT;
TSEL ADDRESS D AA A8 AG AOP AL ST CM CPM CPD RM RO Rl R2 IA 18 ID RS lOP IY IL FR FS FOP W FCW FL FRG X

WAIT W

is WAIT (OFFF)

%********
% Jump Subroutine Instructions: <L X E >JSR
%
% Read PCN (Return PC) into PDR; Complete IPST.
%
% Move PDR to AC3, AG3 ; and IPOP.
%
%********

COMPLETE_JUMP, PDR == RETURN_PC;
TSEL ADDRESS DM A8 AG AOP AL ST CM CPM CPD RM RO Rl R2 lA 18 ID RS lOP IY IL FR FS FOP W FCW FL FRG X
FALSE W PCN

IY = AG (AG3) = ALU(AC3) == PDR AND A(Ml),
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS DM A8 AG AOP AL ST CM CPM CPD RM RO Rl R2 IA 18 ID RS lOP IY IL FR FS FOP W FCW FL FRG X
TRUE AG3 D EFA M S@ IY Ml AC3 PD AD AND PASS Y

OP
CRTN

--0012--LJMP:
--0012--XJMP:
--0012--EJMP:
--0012--JMP:

OP
LEAP

--DFVs: addr
2168
2178
2188
2198
2208
2218
2228
2238
2248
2258
2268

--0013--LJSR:
--0013--XJSR:
--0013--EJSR:
--0013--JSR:

OP
CJMP

--DFVs:
2318

--0014-­
2338

--DFVs:

•
•
•

SAMPLES
MEM
UASM

Instruction Set Microcode
Source File

00.10.00 0009 - 01

Rev
Cycle

09-DEC-82 10: 47: 39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-32

Proprietary information of Data General Corporation

/*----------------------------------------------------------------------+
I I
I Some Nova ALC instructions illustrate the use of the ALU I
I for simple arithmetic. The shift operation is used along I
I with the ALC opcode to provide the decode address. Carry, I
I no-load and skip options are accelerated with hardware. I
I I
+--_._--------- - --- - - - - - - - - - - - ------------ ---- - --- - - - - - - - - - - - - - ---- ---- - */

IA 18 ID RS lOP IY IL FR FS FOP W FCW FL FRG X
SRC DES 8R AD ADD PASS Y

R2

18-AUG-82 15:24:34 RGG"

Rl

Cycle 1

1 cycle no skip
2 cycles skip, no EFA required

Source File

EXECUTION TIME:

IY = AG(DES) = ALU(DES) == 8(DES) + A(SRC),
CARRY == ALC_CRY, SKIP_ON ALC_RESULT,
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS D AA A8 AG AOP AL ST CM CPM CPD RM RO
TRUE DES D EFA M S@ IY XZ ALC

%********
% NOVA Arithmetic and Logical Instructions
%
%
%
%
% Perform ALU operation; then Pass, Shift, or Swap; write result to AG
% and ALU AC pointed to by DES. Enable ALC skip and IPOP.
%*******

OP
CRTN

2348 • EJECT;
2358 • FT 1 "ALC
2368
2378
2388
2398*
2408*
2418*
2428*
2438*
2448*
2458*
2468
2478
2488
2498
2508
2518
2528
2538
2548
2558
2568
2578

--0015--ADD:
2598
2608

--DFVs:
2618

--0016--INC:
2638
2648

OP
CRTN

IY = AG(DES) = ALU(DES) == ZERO +1+ A(SRC),
CARRY == ALC_CRY, SKIP_ON ALC_RESULT,
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS D AA A8 AG AOP AL ST CM CPM CPD RM RO
TRUE DES D EFA M S@ IY XZ ALC

Rl R2 IA 18 ID RS lOP IY IL FR FS FOP W FCW FL FRG X
SRC DES ZR AD CAD PASS Y

--DFVs:
2658

--0017--SU8L:
267B
268B

OP
CRTN

IY = AG(DES) = ALU(DES) == BIT_SHIFT_LEFT( 8(DES) - A(SRC} },
CARRY == ALC_CRY, SKIP_ON ALC_RESULT,
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2
TRUE DES D EFA M S@ IY XZ ALC

IA 18 ID RS lOP IY
SRC DES 8R AD CSR 8LO

IL FR FS FOP W FCW FL FRG X
Y

--DFVs:
269B

SAMPLES
ALC
UASM

Instruction Set Microcode
Source File

00.10.00 0010 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15: 24: 34 RGG

Assembled Examples



5-33

Proprietary information of Data General Corporation

%====..O'O'O'O'O'O'O'O' ••••••••= •••••••O'= O'O' O'O'O'O' =.O' O'

% Load Effective Address: LEF, ELEF, XLEF, LLEF
%
% Load LAR into the AG and ALU DES registers. Abort Memory. If RMAX is
% violated, then go to the RMAX Protection routine, else IPOP.
% Load the RMAX fault code into GRO and faulting address into
% AR5 and go to the Protection routine.
%===••a =c:w:: ••==•••=.c:•••••===.=====••• c:••••••_mc._._===:

IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DES SC CD ANC PASS Y BlTO

IA

18-AUG-82 15:24:34 RGG"Cycle 1Source File

This example also shows the use of a conditional IPOP. A
memory abort operation is recommended following the failure
of a conditional IPOP.

The architecture specifies that the effective address is
checked for a ring crossing error. This check will not
be performed by hardware because the memory operation
used to generate the address is aborted. A micro test
is used to check validity.

IY = AG<DES) = ALU<DES) =O' SPAD (BITO) NOT_AND LAR,
EXTEND_MICRO_CYCLE,
ATTEMPT_NEXT_EFA, ABORT_MEMORY,
IF NOT INWARD_REFERENCE RETURN_ELSE_GOTO RMAX_PROTECTION;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2
NRMAX RMAX_PRO DES D EFA M S@ A IY LAR GN XTND

OP
CRTN

1*---·-------------------------------------------------------------------+
I I
I A Load Effective Address instruction is nothing more I
I than an aborted memory reference. The final contents of I
I the Logical Address Register are loaded, via the CPD bus
I and ALU, into the required registers.
I
I
I
I
I
I
I
I
I
I
I
+----.------------------------------------------------------------------*1

2706 .EJECr;
2716 .FT 1 "IMMEDIATE
2726
2736
2746
2756*
2766*
2776*
2786*
2796*
2806*
2816*
2826*
2836*
2846*
2856*
2866*
2876*
288B*
289B*
290B*
291B*
292B
293B
294B
295B
296B
297B
298B
299B
300B
301B
3026

--0018--LLEF:
--0018--XLEF:
--0018--ELEF:
--0018--LEF:

307B
308B
309B

--DFVs: add. is RMAX_PROTECTION (0019) const is BITO (0000)
310B

--0019--RMAX_PROTECTION:
312B ABORTJ1EMORY,
313B IY = ALU(GRO) == CNST(PRT_RMX) OR CPD_ZERO,
314B CPM = AG(AR5) O'O' ALU(DES), GOTO PROTECTION_FAULT;

OP TSEL ADDRESS D AA A6 AG AOP AL ST CM CPM CPD RM RO
LEAP PROTECT I AR5 MAlA N

Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DES GRO CN CD OR PASS Y PRT_RMX

--DFVs:
315B
316B

add:r is PROTECTION_FAULT (0002 *EXT*) const is PRT_RMX (0004)

SAMPLES Instruction Set Microcode Rev
IMMEDIATE Source File Cycle
UASM 00.10.00 0011 - 01

09-0EC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-34

Proprietary information of Data General Corporation

317 B / *----------------------------------------------------------------------+
318B* I 1
319B* 1 Instructions which load immediate data from the instruction 1
320B* I stream use an approach similar to the LEF instructions. In 1
321B* 1 thei r case, the immediate da ta has been loaded into the LAR 1
322B* 1 by the IP as specified by decode information, but no memory 1
323B* I reference has been initiated. 1
324B*.1 1
325B* +----------------------------------------------------------------------* /
326B
327B
328B %********
329B % Long Add Immediates: <W N >ADDI
330B % DES + (Displacement) -> DES (Displacement is in LAR)
331B % The Wand N types load overflow into OVR and CRY<O 16> into CARRY.
332B %********
333B

--OOlA--ADDI: IY = ALU(DES} = AG(DES} == B(DES} + LAR, ATTEMPT_NEXT_EFA, RETURN;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CRTN TRUE DES D EFA M S@ IY LAR DES BR CD ADD PASS Y

--DFVs:
335B

--001 B--WADDI :
--OOlB--WNADI:
--OOlB--NADDI:

339B
340B

OP
CRTN

% For the 32-bit Immediate
% For the 16-bit Immediate
IY = ALU(DES} = AG(DES} "'= A(DES} + LAR,

CARRY == ALU_CRY, UPDATE_OVR,
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl
TRUE DES D EFA M S@ IY LAR XZ LOVC

R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DES DES CA ADD PASS Y

--DFVs:
341B
342B

••
•

SAMPLES Instruction Set Microcode Rev
IMMEDIATE Source File Cycle
UASM 00.10.00 0012 - 01

09-DEC-82 10:47:39 RGG
18-AUG-82 15: 24: 34 RGG

Propr ietary inEorma tion of Data General Corporation

343 B / *----------------------------------------------------------------------+
344B* 1
345B* A short immediate field is derived from the source 1
346B* accumulator bit field of the macro instruction. Actual 1
347B* values are 0 through 3, but implied values are 1 through 4. I
348B* The following instructions read an operand from a memory 1
349B* location, subtract the implied immediate data from it, and I
350B* store the result back in the same memory location. 1
351B* 1
3 52B* +-----.--------------------------------------- -- ------------------------* /
353B
354B
355B %*****'k**
356B % Short Subtract Immediate from Memory: <L X><W N >SBI
357B %
358B % MEM - ([ACS) + 1) -> ME:
359B %
360B % Read Memory operand into ALU (GRO). Start same address to write back.
361B % Go to XLSBI to complete the operation and perform the write.
362B %********
363B

--OOlC--XWSBI:
--OOlC--LWSBI: CPM ALU(GRO} == MEM-READ,

366B START AY == PASS (LAST__LA) FOR WRITE_DOUBLE,
367B GOTO XLSBI;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
LEAP XLSBI L PSB WD R MM GRO M

CPM = ALU (GRO) == MEM-READ,
START AY == PASS (LAST__ LA) FOR WRITE_WORD,
GOTO XLSBI;

TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
XLSBI L PSB WWR MM GRO M

is XLSBI (OOlE)

IY = MEM-WRITE == A(GRO} -1- SRC_POINTER,
CARRY == ALU_CRY, UPDATE_OVR,
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS DAA AS AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
TRUE D EFA S@ W IY XZ LOVC GRO AS DA SMR PASS

OP
LEAP

OP
CRTN

--DFVs: addr is XLSBI (OOlE)
--OOlD--XNSBI:
--OOlD--LNSBI:

370B
371B

--DFVs: addr
372B

--OOlE--XLSBI:
374B
375B

--DFVs:

•
•
•

SAMPLES Instruction Set Microcode Rev
IMMEDIATE Source File Cycle
UASM 00.10.00 0013 - 01

09-DEC-82 10:47:39 RGG
18-AUG-82 15: 24: 34 RGG

Assembled Examples



5-35

Proprietary information of Dat~ General Corporation

EFA calculations for a Byte address cannot be completely performed
by the hardware. The PC relative index case cannot be performed
since the Displacement is a byte address and the PC is a word address.
The AG converts the byte displacement and performs the other indexing.

IL FR FS FOP W FCW FL FRG XID RS IOP IY
PD AD CSR PASS

IBIA
Ml

R2

IB-AUG-82 15:24:34 RGG"

Rl

Cycle 1

Instructions

- A(Ml), ABORT_MEMORY;
AB AG AOP AL ST CM CPM CPD RM RO
ARO M A IY

EFA

Source File

Subroutines to perform
READ/WRITE PC Relative Byte Addresses

Byte

PC Relative Addressing must be handled separately
since the IP cannot align a Byte displacement.

Abort the previous start and move the PC of the instruction
plus 1 (PC of the DISP) to the AG (ARO).
the PC relative address by adding the Displacement (LAST_LA)
to the PC (ARO) and start for the Byte Read/Write. Word
addressing must be forced since the addresses have already
been aligned to word addresses. Return to the caller.

%******
%
%
%
%
%
%
%
%
% Form
%
%
%
%******

/ *----_._----------------------------------------- -------------------- ---+
I I
I These selections f rom the byte microcode show the use of I
I a conditional subroutine call, a memory start using the I
I address generator, and a memory abort. A copy of the PC I
I of execution + 1 is moved to the address generator by first I
I loading PCX into PDR, and then sUbtracting -1 from it and I
I loading the result in the AG register file via the CPM bus. I
I I
+-----.--- -------- ------------- - - - - - - - - - ----- - - - - - - - - - - - - - - - - - - - ---- - - - - */

%*** **** *** **** ** ** ***************** ******************* ********* ****
%
%
%
%
%
%
%
%
%
%***** fie ******** *************** ***** ** ******** ****** * ************ ****

376 B •EJ ECT ;
377B .FT 1 "BYTE
37BB
379B
3BOB
3BIB*
3B2B*
383B*
384B*
3B5B*
3B6B*
387B*
3BBB*
3B9B*
390B
391B
392B
393B
394B
395B
396B
397B
39BB
399B
400B
401B
402B
403B
404B
405B
406B
407B
408B
409B
410B
411B
412B
413B
414B
415B
416B
4170
41BB
419B

--OOlF--READ_PC_BYTE:
421B IY = AG(ARO) == PDR

OP TSEL ADDRESS D AA
CJMP FALSE

--DFVs:
422B

--0020-­
424B

OP
CRTN

START AY a= LAST_LA + A(ARO) WITH_WORD_ADDRESSING FOR READ_BYTE,
RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA
TRUE ARO L ADD RB AT WORD

IB ID RS IOP IY IL FR FS FOP ~I FCW FL FRG X

--DFVs:
425B

SAMPLES
BYTE
UASM

Instruction Set Microcode
Source File

00.10.00 0014 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
l8-AUG-82 15:24:34 RGG

Assembled Examples



5-36

Proprietary information of Data General Corporation

426B
--0021--WRITE_PC_BYTE:

428B IY = AG{ARO) == PDR - A{Ml), ABORT_MEMORY;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CJMP FALSE ARO M A IY

Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
Ml PD AD CSR PASS

--DFVs:
429B

--0022-­
431B

OP
CRTN

START AY == LAST_LA + A{ARO) WITH_WORD_ADDRESSING FOR WRITE_BYTE,
RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA
TRUE ARO L ADD WB AT WORD

IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X

--DFVs:
432B
433B
434B %***"****
435B % Load Byte: LDll, WLDB
436B %
437B % Start the byte address in the SRC accumulator for a Read byte.
438B % Finish the operation at LDA.
439B %********
440B

--0023--WLDB:
--0023--tDB: START AY == PASS{B{SRC» FOR READ_BYTE, GOTO LDA;

OP TSEL ADDRESS D AA AB AG AOP At ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
LEAP LDA SRC B PSB RB

--DFVs: addr is LDA (0010)
443B
444B
445B %********
446B % Indexed Load/Store Byte: LLDB, XLDB, ELDB
447B %
448B % Check for PC relative Addressing before attempting complete of operation.
449B % Get PC of instruction into PDR in case of PC relative addressing.
450B % Subroutine to Start the correct address if index was PC relative.
451B % Complete the operation and IPOP:
452B % LDB: Store the read byte into the AG and the ALU DES.
453B %********
454B

--0024--LLDB:
--0024--XLDB:
--0024--ELDB: PDR == PC_Of_EXECUTION, IF PC_REL_INDEX CALL READ_PC_BYTE;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJ SR IXPC READ_PC_ PCX

--DFVs:
458B

--0025--

--DFVs:
460B
461B

addr is READ_PC_BYTE (OOlF)

CPM = AG{DES) = ALU<DES) MEM_READ, ATTEMPT_NEXT_.EFA, RETURN;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA
CRTN TRUE DES D EFA M S@ R MM

IB ID RS IOP IY
DES

It FR FS FOP W FCW FL FRG X
M

SAMPLES
BYTE
UASM

Instruction Set Microcode
Source File

00.10.00 0015 - 01

Rev 1
Cycle 1

09-DEC-82 10:47:39 RGG
18-AUG-82 15: 24: 34 RGG

Assembled Examples



5-37

Proprietary information of Data General Corporation

/*----------------------------------------------------------------------+
I I
I The code for the XCT instruction address SPAD with a I
I constant, uses the f lags to control sequencing and does I
I a word zero extend with the hex shifter. I
I I
+----------------------------------------------------------------------* /

Enter here for ordinary XCT. If restarting or resuming,
XCTed opcode must still be in DES. Bit 0 of double word saved in
SPAD is cleared to indicate to interrupt handlers that saving
XCT opcode on wide stack is not required. Start execute.

/*--------------------------------------------------------------+
I I
I XCT Execute an AC's contents I
I I
I DES contains the opcode to be executed I
I I
+--------------------------------------------------------------* /

&; % Wait for XCTED_INSTRUCTION test to setup.
ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
&

IL FR FS FOP W FCW FL FRG XID RS IOP IYIBIAR2

l8-AUG-82 15:24:34 RGG"

Rl

Cycle 1Source File
462B • EJECT;
463B .FT 1 "XCT
464B
465B
466B
467B*
468B*
469B*
470B*
471B*
472B*
473B
474B
475B
476B*
477B*
478B*
479B*
480B*
48lB*
482B
483B
484B
485B
486B
487B

--0026--EXECUTE:
--0026--XCT: GOTO

OP TSEL
LEAP

IL FR FS FOP W FCW FL FRG X
XCTOP

IL FR FS FOP W FCW FL FRG X10 RS IOP IY

ID RS IOP IY
SC

IB

IB

IA

IAR2

If XCT was executed by a PBX, then the XCT should set BitO of
XCTOP since it was virtually executed by the PBX.

addr is & (0027)

ID == SPAD( XCTOP), IF NOT XCTED_INSTRUCTION GOTO NOIDIAL_XCT;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2
CJMP NXCTF NORMAL_X

addr is NORMAL-XCT (0029) const is XCTOP (00C3)

--DFVs:
490B

--0027--

--DFVs:
492B
493B
494B
495B

--0028-- IF ID_SIGN=l GOTO EXECUTE_PBX;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl
CJMP DSGN EXECUTE_

--DFVs: addr is EXECUTE_PBX (002D)
497B

--0029--NORMAL__XCT:
499B IY = SPAD( XCTOP ) == WORD_ZERO_EXTEND (A(DES», START_EXECUTE;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE AGO AGO B SUB WW AT CMO WC DES AD WZX NY XCTOP

09-DEC-82 10:47:39 RGG
l8-AUG-82 15:24:34 RGG

Send instruction to the IP via the Cache.

const is XCTOP (00C3)

CPM = EXECUTE_DATA == ALU(DES),
Instr uction Set Microcode Rev
Source File Cycle

00.10.00 0016 - 01

--DFVs:
500B
50lB %
502B

--002A-­
SAMPLES
XCT
UASM

Assembled Examples



5-38

Proprietary information of Data General Corporation

504B MODIFY_FLAGS_4567 ( CLEAR, N, N, N ),
505B GOTO XCT_WAITl;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP vi FCW FL FRG X
LEAP XCT_WAIT A IA GN MFSI DES

C N N N
--DFVs: addr is XCT_WAITI (002B)

506B
507B % Wait 4 cycles before IPOPing.
508B

--002B--XCT_WAITl: MODIFY_FLAGS_456/, TOGGLE, N, N, N ),
51 DB IF FLAG4=0 GOTO XCT_WAITl;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP NFLG4 XCT_WAIT GN MFSI

T N N N
--DFVs: addr is XCT_WAITI (002B)

5llB
--002C--XCT_WAIT2 : MODI FY_FLAGS•..4567 ( TOGGLE, N, N, N ), ATTEMPT_NEXT_EFA,

513B IF FLAG4=1 RETURN_ELSE_GOTO XCT_WAIT2;
OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CRTN FLG4 XCT_"IAJT D EFA S@ GN MFSI

T N N N
--DFVs: addr is XCT_WAIT2 (002C)

514B
515B
516B
517B Enter here from PBX or BKPT after PBX detected. Opcode was
518B placed in DES. Must set bit 0 before saving in SPAD to tell
519B interrupt handlers to save opcode on wide stack. Start execute.
520B Push address for return f rom WAIT.
521B

--002D--EXECUTE_PBX:
523B IY = ALU(GR5) SPAD(BITOJ OR AmES) , START_EXECUTE;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO R1 R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
C;JMP FALSE AGO AGO B SUB WW AT CMO DES GR5 SC AD OR PASS Y BITO

--DFVs: const is BITO ( 0000)
524B
525B % Save executed opcode in SPAD. Send instruction to IP.
526B

--002E-- IY = SPAD (XCTOP) == ZERO OR A(GR5),
528B CPM = EXECUTE_DATA == ALU(GR5);

01' TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO R1 R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE A IA GN WC GR5 ZR AD OR PASS NY XCTOP

--DFVs: const is XCTOP (00C3)
529B

--002F-- MODIFY_FLAGS_4567( SET, N, N, N ), GOTO XCT_WAIT1;
OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO R1 R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
LEAP XCT_WAIT GN MFS1

N N N
--DFVs: addr is XCT_WAIT1 (002B)

SAMPLES
XCT
UASM

Instruction Set Microcode
Source File

00.10.00 0017 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-39

Proprietary information of Data General Corporation

531B • EJECT r
532B .FT 1 "BIT Source File Cycle 1 18-AUG-82 15: 24: 34 RGG"
533B
534B
535B I *----..-----------------------------------------------------------------+
536B* I
537B* This selection from the bit microcode provides varied I
538B* examples of the use of the ALU hardware. Also, this I
539B* code does a read-modify-write memory operation. Note I
540B* the start for a write, and the subsequent read and write I
541B* completions. I
542B* I
543B* The subroutine WBITW is used to resolve indirection chains. I
544B* It requires three cycles per defer level because the word I
545B* pointer of the bit address is indirectable, while the final I
546B* bit address is formed by adding the bit offset to the I
547B* resolved word pointer. I
548B* I
5 49B* +-----..------------------------------------------------------------- ---* I
550B
551B
552B
553B
554B WSZBO - Wide Skip on Zero Bit and set bit to One
555B
556B 5 cycles minimum
557B + 3 cycles for each level of indirection
558B
559B Skip if SRC=DES, ARO <- RSHIFT(DES) , D bus <- SRC
560B

--0030--WSZBO: IY = AG(ARO) == HEX-SHIFT_RIGHT(Rl, A(DES»,
562B ID == B(SRC),
563B SPAR == BIT16,
564B IF SRC=DES GOTO WSZBOBIT;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP COMP WSZBOBIT ARO M IY GN SPCN LS DES SRC BR AD HRO BIT16

--DFVs:
565B
566B
567B

--0031-­
569B
570B

addr is WSZBOBIT (0035) const is BIT16 (0010)

% Call WBITW if indi rect, LA (WW) <- SRC+ARO, GRI <- DES AND OF

START AY "'''' B(ARO) + A(SRC) FOR WRITE_WORD,
IY = SPAR_TABLE_OFFSET "'''' B(Ml) AND A(DES) ,
IF ID_SIGN=l CALL WBITW;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2
CJSR DSGN WBITW SRC ARO B ADD WW GN SPY4 LS

IA IB
DES Ml

Rl

ID RS lOP IY IL FR FS FOP ~I FCW FL FRG X
BR AD AND PASS

--DFVs: addr is WBITW (0036)
571B
572B % GRO <- CPM, SPAR <- GRI OR BIT16
573B

--0032--WSZBONRM: IY '" ALU(GRO) == SPAD(SPAR) AND A(Ml),
575B CPM '" TREG "'= MEM_READ;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CJMP FALSE R MM GN

Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
LT Ml GRO SS AD AND PASS Y

--DFVs:
576B

SAMPLES
BIT
UASM

Instruction Set Microcode
Source File

00.10.00 0018 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15: 24: 34 RGG

Assembled Examples



5-40

Proprietary information of Data General Corporation

577B % Set WORD(BIT') =1, Note, an unmodified copy exists in GRO for testing.
578B

--0033-- IY = MEM..-WRITE == A(GRO) OR TREG;
OP TSEL ADDRESS DM 1'.8 AG AOP AL ST CM CPM CPD RM RO Rl R2 II'. IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE W IY TRG GRO CA OR PASS

--DFVs:
580B
581B % Macro skip if WORD(BITi)=O (GRO * SPAD(SPAR)=O), else IPOP
582B

--0034-- ATTEMPT_NEXT_EFA,
584B IY == A(GRO) AND TREG,
585B SKIP_ON ALU=O,
586B RETURN;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 II'. IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CRTN TRUE D ff'A S@ TRG GN WSKP GRO CA AND PASS

FZR
--DFVs:

587B
588B % LA(RW) <- ARO, append CRE, GRI <- DES AND OF
589B

--0035--WSZBOBIT: START AY == PASS(B(ARO» IN_CURRENT_RING FOR WRITE_WORD,
591B IY = SPAR_TABLE_OFFSET == B(Ml) AND A(DES),
592B GOTO WSZBONRM;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 II'. IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
LEAP WSZ80NRM ARO B PSB WW GN SPY4 AC LS DES Ml BR AD AND PASS

--DFVs: addr is WSZBONRM (0032)
593B
594B
595B % *** ** ***** ** *** ** ******** ****** *** *********************** ****
596B %
597B %
598B %
599B % WBITW - RESOLVES WIDE BIT INDIRECTION (MEMORY WRITE)
600B %
601B % Used by WBTO, WBTZ, WSZBO
602B %
603B % ARI <- SRC (First time only), LA(RD) <- ARl, Abort assumed WW
604B % Use defer random to be sure indirection does not exceed 15 levels.
6058

--0036--WBITW: START AY = AG(ARl) =- CNST(O) + A(SRC) FOR READ_DOUBLE,
607B ABORT_MEMORY,
608B DEFER-ON_FALSE_TEST,
609B GOTO WBITW2;

OP TSEL ADDRESS D M AB AG AOP AL ST CM CPM CPD RM RO Rl R2 II'. IB ID RS lOP IY
LEAP WBITW2 SRC ARI C ADD Y RD A AT DF

--DFVs: addr is WBITW2 (0038)
610B
611B % Continue resolving indirection, LA(RD) <- ARl% Abort WW
612B

--0037--WBITWl: START AY =- PASS(B(ARl» FOR READ_DOUBLE,
614B ABORT_MEMORY,

IL FR FS FOP W FCW FL FRG X
00

SAMPLES
BIT
UASM

Instruction Set Microcode
Source File

00.10.00 0019 - 01

Assembled Examples

Rev
Cycle

09-DEC-B2 10: 47: 39 RGG
18-AUG-B2 15:24:34 RGG



5-41

Proprietary information of Data General Corpor a tion

615B DEFER-ON_FALSE_TEST;
OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE ARl B PSB RD A AT DF

--DFVs:
616B
617B % ARI <- CPM
618B

--0038--WBITW2: CPM = AG(ARl) == MEM_READ;
OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE ARl M R MM

--DFVs:
620B
621B
622B

--0039-­
624B

--DFVs:
625B
626B

•
•
•

% Return if no indirection, LA (WW) <- ARl+ARO

START AY == B(ARO) + A(ARl) FOR WRITE_WORD,
IF NOT INDIRECT RETURN_ELSE_GOTO WBITWl;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CRTN NINDR WBITWI ARI ARO B ADD WW

addr is WBITWI (0037)

Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X

SAMPLES
BIT
UASM

Instruction Set Microcode
Source File

00.10.00 0020 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Proprietary information of Data General Corporation

627 B / *---------------------- - ----------------------------------------- - - ----+
628B* I I
629B* I Wide Count Bits uses a dispatch table to accelerate I
630B* I counting the number of bits in an accumulator which are I
631B* I set. I
632B* I I
633 B* +--------------------------------------------------------------------- - * /
634B
635B
636B %
637B %
638B %
639B % WCOB - Wide Count Bits
640B %
641B % Used by COB
642B %
643B % 3 cycles minimum (all zeroes)
644B % 18 cycles maximum
645B %
646B % Times:
64/B % 2 cycles setup
648B % + 2 cycles if nybble = 00 Repeat until remaining
649B % or 1 cycle if nybble <> 00 result = 0 (by shifting)
650B
651B AG: CPD<- SRC, Load DSP REG, ALU: PDR <- CPD
652B

--003A--WCOB: PDR = CASE_DATA == AG(SRC);
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY
CJMP FALSE SRC AGA GN LD

IL FR FS FOP 1'1 FCW FL FRG X

--DFVs:
654B
655B
656B
657B
658B
659B

--003B--WCOBl:
661B
662B
663B

OP
DSPA

AG: CPM <- DES <- DES + CONST, Load DSP REG
ALU: CPD <- PDR <- RSHIFT(PDR), DES <- CPM
F bus <- PDR AND Ml for FZR test
Continue dispatching.

AY = AG(DES) = ALU(DES) == CNST(O) + A(DES),
IY = CASE_DATA == HEX_SHIFT_RIGHT (Rl, PDR),
ALU_TEST == A(Ml) AND PDR,
CAS E_4_INTO WCOBTAB;
TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO

WCOBTAB F DES DES C ADD Y AG IY GN
Rl
LD

R2 IA
Ml

IB ID RS IOP IY
DES PD DA AND BRO

Rl

IL FR FS FOP 1'1 FCW FL FRG X
t1 00

--DFVs:
664B

SAMPLES
BIT
UASM

addr is WCOBTAB (0000)

Instruction Set Microcode
Source File

00.10.00 0021 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-42

Proprietary information of Data General Corporation

665B .EJECT;
666B .FT 1 "STACK Source File Cycle 1 18-AUG-82 15:24:34 RGG"
667B
668B
669B /* -.---------------------------------------------------------------------+
670B* I I
671B* I These two examples are corresponding narrow and wide stack I
672B* I operations. The narrow stack operation must first read I
673B* I the stack parameters from memory. The wide stack I
674B* I parameters for the current ring are in dedicated ALU and AG I
675B* I register file locations. I
676B* I I
677B* I In order to read its stack parameters, the narrow stack I
678B* I operation starts memory using an address generated from I
679B* I the constant field. Because the Logical Address bus is I
680B* I forced to narrow conditiol':o;wring the narrow stack I
681B* instruction, bits 1-3 of the address are forced to the I
682B* value of CRE. I
683B* I
684B* Both samples illustrate the use of the SRC and DES pointers I
685B* to address a range of accumulators in a loop. I
686B* I
687 B* +----------------------------------------------------------------- - - --- * /
688B
689B
690 B / *-.-------------------------------------------------------- - ------- - - --+
691B* I I
692B* I Push Multiple Accumulators I
693B* I I
694B* I PSH acs,acd I
695B* I I
696 B* +-------------------------------------- ----- ---- -- -- ------------------ * /
697B

--003C--PSH: START AY == PASS (CNST(NSP» FOR READ_WORD;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
c;JMP FALSE C PSB RW NSP

--DFVs: canst is NSP (0020)
699B
700B %NSP--)ARO
701B

--003D-- CPM = AG(ARO) ME~READ,

703B START AY PASS (CNST (NSL) ) FOR READ_WORD;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE ARO C PSB M RW R MM NSL

--DFVs: const is NSL ( 0022)
704B
705B %NSL--)GRl
706B

--003E-- CPM = ALU (GRll == ME~READ,

708B START AY = AG (ARO) =" B(ARO) + A (ONE) FOR WRITE_WORD,
709B DECREMENT_DES_POINTER, IF SRCODES CALL PSHL;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
C;JSR NCOMP PSHL ONE ARO B ADD Y WWR MM GN DECD GRl M

--DFVs:
nOB

SAMPLES
STACK
UASM

addr is PSHL (0041)

Instruction Set Microcode
Source Fi Ie

00.10.00 0022 - 01

Assembled Examples

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG



5-43

Proprietary information of Data General Corporation

711B
712B

--003F--PSHM:
7l4B
7l5B

OP
CJMP

%NSL-TOP OF STACK-->TEST

CPM = MEM-WRITE == ALU(SRC), PDR == AG(ARO),
ALU_TEST == B(GRl) - CPD,
START AY == PASS (CNST(NSP» FOR WRITE_WORD;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
FALSE ARO C PSB WW W IA AGA

Rl R2 IA IB ID RS lOP IY
SRC GRl BR CD CSR

IL FR FS FOP W FCW FL FRG X
NSP

const is NSP (0020)--DFVs:
716B

--0040--NOTST:
7l8B

OP
CRTN

IY = MEM-WRITE == PDR OR CPD_ZERO, ATTEMPT_NEXT_EFA,
IF IS>=IR RETURN_ELSE_GOTO NSTK_OVERFLOW;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CRY NSTK_OVE D EFA S@ W IY N

Rl R2 IA IB ID RS lOP IY IL FR FS FOP 1'1 FCW FL FRG X
PD CD OR PASS

--DFVs: addr is NSTK_OVERFLOW (0000 *EXT*)
719B
720B %DONE? ARO+l-->ARO,LAR,WW SRC-->CPM [ACS]+l--> [ACS]
721B

--0041--PSHL: CPM = MEM-WRITE == ALU(SRC),
723B START AY = AG(ARO) == B(ARO) + A(ONE) FOR WRITE_WORD,
724B INCREMENT_SRC_POINTER, IF SRC=DES RETURN_ELSE_GOTO PSHL;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CRTN COMP PSHL ONE ARO B ADD Y WW W IA GN INCS SRC

--DFVs: addr is PSHL (0041)
725B
726B
727B %*****
728B % Wide Push Accumulators: WPSH
729B %
730B % Start a write for the push.
731B % Write the Accumlator to the new TOS, and start a write for the next one.
732B % Generate a test for overflow: SL - SP. Increment the SRC pointer
733B % and compare it to the DES pointer for termination of the loop.
734B % Update the SP from PDR and abort the pending write. IPOP if no overflow
735B % occurred, else service the overflow.
736B %*****

--0042--WPSH: START AY = AG(SP) == CNST(2) + A(SP) FOR WRITE_DOUBLE;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP 1'1 FCII FL FRG X
CJMP FALSE SP SP C ADD Y WD 02

--DFVs:
738B

--0043 --WPSH_LOOP:
740B CP~I ME~LWRITE == ALU(SRC), PDR == AG(SP),
741B ALU_TEST == B(SL) - AG(SP),
742B START AY = AG(SP) == CNST(2) + A(SP) FOR WRITE_DOUBLE,
743B INCREMENT_SRC_POINTER, IF SRC<>DES GOTO WPSH_LOOP;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY
CJMP NCOMP WPSH_LOO SP SP C ADD Y WD W IA AGA GN INCS SRC SL BR CD CSR

--DFVs: addr is WPSH_LOOP (0043)
744B

--0044--WPSHT: IY = AG(SP) == PDR AND A(Ml),

IL 'FR FS FOP 1'1 FCW FL F'RG X
02

SAMPLES
STACK
UASM

Instruction Set Microcode
Source File

00.10.00 0023 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-44

Proprietary information of Data General Corporation

746B

--DFVs:

•
•
•

IF IS>=IR RETURN_ELSE_GOTO WSTK-OVERFLOW;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CRTN CRY WSTK-OVE SP D EFA M S@ A IY

addr is WSTK_OVERFLOW (0001 *EX'f*)

Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
Ml PO AD AND PASS

SAMPLES
STACK
UASM

Instruction Set Microcode
Source File

00.10.00 0024 _. 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Proprietary information of Data General Corporation

7 47 B • EJ ECT ;
748B .FT 1 "PRIV Source File Cycle 1 18-AUG-82 15:24:34 RGG"
749B
7506
7 51B /*----------------------------------------------------------------------+
752B* I
753B* Privileged instructions are those which can be executed
754B* only while the PC is in ring O. Microcode for these
755B* instructions must confirm this by testing for CRE = O.
7566*
757B* This code restarts the IP at the next instruction to be
758B* executed. Specifying WIDE_JUMP will result in a double
759B* word being fetched for the IP start, while specifying
760B* NARROW_JUMP (or simply JUMP) will cause a single word to
761B* fetched. This is not to be confused with the width of the
762B* address bus. Rather, these wi]] result in a wide or narrow
763B* defer chain being resolv~d should indirection be specified.
764B*
76 5B* +------------------------ ._- -- ------------------------------------------*/
766B
767B
768B / *----------------------------------------------------------- - - -----+
769B* I I
770B* I PURGE THE ATU: PATU I
771B* I I
772B* I I
773B* I I
77 4B* +------------------------------------------------------------------* /
775B

--0045--PATU:
777B
778B % Take a Privilege Protection Fault if not in Ring O.
779B IF RINGOO GOTO PRIVILEGE_PROTECTION;

OE' TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS 101' IY IL FR FS FOP W FCW FL FRG X
C,JMP NRNGO PRIVILEG

--DFVs: addr
780B
781B
782B
783B

--0046--PATUW:
785B

OE'
C,JMP

is PRIVILEGE_PROTECTION (0003 *EXT*)

% Make sure a clean set of Validity bits are availble •••
%also set CRE bi ts to zero for LSBRA

IF ATU_PURGING GOTO PATUW, PDR == PC,
AY = CRE == B(AR3) - A(AR3);

TSEL ADDRESS 0 AA AB AG AOP AL ST CM CPM CPD RM RO Rl
PRGB PATUW AR3 AR3 B SUB PC AT LCRE

R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X

--DFVs:
786B
787B

--0047--

--DFVs:
789B
790B

addr is PATUW (0046)

% ••• then swap in the clean Validity bits.
PURGE_THE_ATU_CACHE, IY = AG(ARO) A(Ml) AND PDR;

OE' TSEL ADDRESS 0 AA AB AG AOP AL ST CM CPM CPO RM RO Rl
CoJMP FALSE ARO M IY AT PRGA

Restart the II' since Logical memory has been changed.

R2 IA
Ml

IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
I'D DA AND PASS

SAMPLES
PRIV
UASM

Instruction Set Microcode
Source File

00.10.00 0025 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-45

Proprietary information of Data General Corporation

--0048--
OP
LEAP

START AY = PC == PASS (B(ARO» FOR WIDE_JUMP, GOTO JMP;
TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl

JMP ARO B PSB RD AT IPST
R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X

--DFVs: addr is JMP (0012)

•
•
•

SAMPLES
PRIV
UASM

Instruction Set Microcode
Source File

00.10.00 0026 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Proprietary information of Data General Corporation

18-AUG-82 15:24:34 RGG"Cycle 1Source File

Accumulator to accumulator code is also used for memory to
accumulator instructions by first loading the operand from
memory into a general regist8L, lGading the source pointer
with the general register number ~nd entering the
accumulator to accuwl.!lator code.

/*-----,-----------------------------------------------------------------+
I I
I These selections from the floating point code illustrate I

loads, stores, and addition. Note that only one cycle I
is required for single precision loads. When the upper I
32 bits of the floating point register file are loaded I
with data from the CPM bus, the bottom 32 bits are loaded I
with zeroes. I

I
I
I
I
I
I
I
I

+-----_.----------------------- .,-._--_....---------------------------------* /

• EJECT;
.FT 1 "fLPT

792B
793B
794B
795B
796B
797B*
798B*
799B*
800B*
801B*
802B*
803B*
804B*
805B*
806B*
807B*
808B*
809B*
810B*
811B*
812B*
813B
814B

•
•
•

SAMPLES
FLPT
UASM

Instruction Set Microcode
Source File

00.10.00 0027 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-46

Proprietary information of Data General Corporation

815B /*----------------------------------------------------------------------+
816B* I I
817B* I Load Floating Point Single (Long Displacement) I
818B* I I
819B* LFLDS fpac,[@]displacement[,index] I
820B* XFLDS fpac,[@]displacement[,index] I
821B* FLDS fpac,[@]displacement[,index] I
822B* I
823B* Requires 1 cycle. I
824B* I
825 B* +----- - --------- - - - - - -- - - - - - - - - - - - - - -- - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -- - - */
826B
827B Read a double word from memory and place it in the high
828B order half of the destination FPAC. Update the FPSR.
829B Return.
830B

--00 49--LFLDS:
--00 49--XFLDS:
--0049--FLDS: CPM = FP_HIGH(DES) == ME~READ,

834B EXPONENT == FA, FA == A(DES), UPDATE_FPSR,
835B ATTEMPT_NEXT_EFA, RETURN;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY
CRTN TRUE D EFA S@ R MM FL

LAX DES

IL FR FS FOP W FCW FL FRG X

DES MH UFS
--DFVs:

836B
837B
838B / *--------------------------------- ------------------- - - ------------- - - - +
839B* I I
840B* I Load Floating Point Double I
841B* I I
842B* LFLDD fpac,[@]displacement[,index] I
843B* XFLDD fpac,[@]displacement[,index] I
844B* FLDD fpac,[@]displacement[,index] I
845B* I
846B* Cycles: I
847B* I
848B* +----------------------------------------------------------------------* /
849B
850B Read a double word from memory and place it in the high
851B order half of the destination FPAC. Update the FPSR.
852B Start memory for a read of the next double word.
853B

--00 4A--LFLDD:
--004A--XFLDD:
--004A--FLDD: CPM = FP_HIGH(DES) == ME~READ,

857B EXPONENT == FA, FA == A(DES), UPDATE_FPSR,
858B START AY == LAST_LA + A(TWO) FOR READ_DOUBLE;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE TWO L ADD RD R MM FL

--DFVs:
859B
860B
861B
862B

--004B--

LAX

Read a double word from memory and place it in the low order half
of the destination FPAC.

CPM = FP_LOW(DES) == MEM_READ, FD == A(DES) + ZERO,

DES DES MH UFS

SAMPLES
FLPT
UASM

Instruction Set Microcode
Source File

00.10.00 0028 - 01

Rev 1
Cycle 1

09-DEC-82 10:47:39 RGG
18-AUG-82 15: 24: 34 RGG

Proprietary information of Data General Corporation

Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
864B

--DFVs:
865B
866B

•
•
•

ATTEMPT_NEXT_EFA, RETURN;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CRTN TRUE D EFA S@ R MM

DES FA ZR 'l'AD DES ML

SAMPLES
FLPT
UASM

Instruction Set Microcode
Source File

00.10.00 0029 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-47

Proprietary information of Data General Corporation

867 B / *-----.----------------------------- -- ---------------- -------- - -- -- - ----+
868B* I I
869B* I Store Floating Point Single I
870B* I I
871B* LFSTS fpac,l@)displacement[,index) I
872B* XFSTS fpac,l@)displacementl,index) I
873B* FSTS fpac,l@)displacementl,index) I
874B* I
875B* Cycles: I
876B* I
877 B* +------.-------------------------------------------------- - - ----------- -* /
878B
879B
880B Get a double word from the high order half of the
881B destination FPAC and write it to memory.
882B

--004C--LFSTS:
--004C--XFSTS:
--004C--FSTS: CPM = MEM-WRITE == FP_HIGH(DES), ATTEMPT_NEXT_EFA, RETURN;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY
CRTN TRUE D EFA S@ W HF

DES

IL FR FS FOP W FCW FL FRG X

--DFVs:
886B
887B
888B / *----- ---------------------------------------------------------------- - +
889B* I I
890B* I Store Floating Point Double I
·891B* I I
892B* I LFSTD fpac,l@)displacement[,index] I
893B* I XFSTD fpac,l@)displacementl,index) I
894B* I FSTD fpac,l@)displacementl,index) I
895B* I I
896B* I Cycles: I
897B* I I
898B* +------.----------------------------------------------------------------* /
899B
900B
901B Read a double word from the high order half of the destination
902B FPAC and write it to memory. Start memory for a write of the
903B next double word.
904B

--004D--LFSTD:
--00 4D--XFSTD:
--004D--FSTD: CPM = MEM-WRITE == FP_HIGH(DES) ,

908B START AY == LAST_LA + A(TWO) FOR WRITE_DOUBLE;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE TWO L ADD WD W HF

DES

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Instruction Set Microcode
Source File

00.10.00 0030 - 01

--DFVs:
909B
910B
911B

--004E--

--DFVs:
SAMPLES
FLPT
UASM

OP
CRTN

Write the low order half of the destination FPAC to memory.

CPM = MEM-WRITE == FP_LOW(DES), ATTEMPT_NEXT_EFA, RETURN;
TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl
TRUE D EFA S@ W LF

Rev
Cycle

R2 IA

DES

IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X

Proprietary information of Data General Corporation

913B
914B

•
•
•

SAMPLES
FLPT
UASM

Instruction Set Microcode
Source File

OO.lO.DO 0031 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-48

Proprietary information of Data General Corporation

915B / *----------------- - --- - ----- --------------------------------------------+
916B* I
917B* Add Single (Memory to FPACI I
918B* I
919B* LFAMS fpac, [@ldisplacement[,indexl
920B* XFAMS fpac, [@ldisplacement [ , index 1
921B* FAMS fpac,[@ldisplacement[,indexl
922B* I
923B* I Cycles:
924B* I
925B* +--.---------------------------------------------------------------------* /
926B
927B
928B
929B Read a double word from memory and place it in the high order
930B half of a temporary register. Place the number of the temporary
931B register in the source register pointer. Go to code which
932B executes floating point add.
933B

--004F--LFAMS:
--004F--XFAMS:
--004F--FAMS: CPM = FP_HIGH(FGOI == MEM....READ, POINT_SRC_TO FGO, GOTO FAS;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY
LEAP FAS R MM GN LDAS CN

IL FR FS FOP W FCW FL FRG X

FGO FGO MH
--DFVs: addr is FAS (00521

937B
938B
939B / *------------------------------- ..----------------- - - -- -------------- - -- +
940B* I I
941B* I Add Double (Memory to FPACI (Long Displacement> I
942B* I I
943B* I LFAMD fpac,[@ldisplacement[,index] I
944B* I XFAMD fpac,[@]displacement[,indexl I
945B* I FAMD fpac, [@]displacement[,indexl I
946B* I I
947B* I Cycles: I
948B* I I
949B* +----------------------------------------------------------------------* /
950B
951B Read a double word from memory and place it in the high order
952B half of a temporary register. Start a memory read for the next
953B double word. Place the number of the temporary register in the
954B source register pointer.
955B

--0050--LFAMD:
--0050--XFAMD:
--0050--FAMD: CPM = FP_HIGH(FGOI == MEM..,.READ,

959B START AY == LAST_LA + A(TWOI FOR READ_DOUBLE,
960B POINT_SRC_TO FGO;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE TWO L ADD RD R MM GN LDAS CN

--DFVs:
961B
962B
963B
964B

SAI1PLES
FLPT
UASM

Read a double word from memory and place it in the low order half
of the temporary register. Go to code which executes floating
point add.
Instruction Set Microcode Rev 1 09-DEC-82 10:47:39 RGG
Source File Cycle 1 18-AUG-82 15:24:34 RGG

CO.10.00 0032 - 01

FGO FGO MH

Assembled Examples



5-49

Proprietary information of Data General Corporation

LWR

LWR

FGO ML

FA FB TSB R

FA RS ADD D

IL FR FS FOP W FCW FL FRG X

IL FR FS FOP W FCW FL FRG X

IL FR FS FOP W FCW FL FRG X

Rl R2 IA IB ID RS lOP IY

TRN ACA LZD SRC DES

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Rev
Cycle

Add with signs the right shifted mantissa in the working register
to the mantissa selected by the swap bit. Place the result in
the working register. Add mantissa overflow bit to the exponent
selected by the swap bit. Form the guard digits and load the
signs as selected by the swap bit. Detect leading zeroes in the
result and load the shift magnitude register.

LAB SUB CMP SRC DES

FD = WR == SELECTED_A(SRC,DES) @+ PRESCALED_WR TRUNCATED_IF_NOT_ROUNDING,
EXPONENT == FA+MOF, LOAD_SIGNS, SHIFT_MAG == LBADING_ZERO-DETECT/

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY
CJMP FALSE FL

Instruction Set Microcode
Source File

00.10.00 0033 - 01

965B
--0051-- CPM = FP_LOW(FGO) == MEM_READ, GOTO FAD/

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
LEAP FAD R MM

--DFVs: addr is FAD (0052)
967B
968B
969B / *- ---------------------------------------------------------------------+
970B* I I
971B* I Add Single (FPAC to FPAC) I
972B* I I
973B* I FAS facs,facd I
974B* I I
975B* I Cycles: I
976B* I I
977 B* +-----.--------- ------------- _.-- ----------------------------------- - ----* /
978B
979B / *----.------------------------- - --------------------------------------- - +
980B* I I
981B* I Add Double (FPAC to HAC) I
982B* I I
983B* I FAD facs,facd I
984B* I I
985B* I Cycles: I
986B* I I
987 B* +-----.---------------------------------- - - -----------------------------* /
988B
989B Compare source and destination mantissas and load signs. Compare
990B exponents and load the shift magnitude register with the
991B difference. If the exponents are equal, the working register is
992B loaded with the smaller mantissa. If the exponents are not
993B equal, the working register is loaded with the mantissa
994B corresponding to the smaller exponent. The swap bit is set if
995B the source mantissa is loaded into the working register.
996B

--0052--FAD:
--0052--FAS: FD == A(SRC) - B(DES), LOAD_SIGNS,

999B EXPONENT == FA-FB, WR == PRESCALE_OPERAND/
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY
CJMP FALSE FL

--DFVs:
1000B
1001B
1002B
1003B
1004B
1005B
1006B
1007B

--0053-­
1009B

--DFVs:
1010B

SAMPLES
FLPT
UASM

Assembled Examples



5-50

Proprietary information of Data General Corporation

101lB %
1012B %
1013B %
1014B %
1015B %
1016B

--0054--FRND:
1018B
1019B
1020B

OP
CRTN

--DFVs:
1021B
1022B
1023B
1024B
1025B

Add left shifted result in working register and round bit and
allow correction for mantissa overflow. Select sign in A
register. Adjust the exponent for normalization and
mantissa overflow. Store result in destination FPAC. Update the
FPSR.

FD = FPU(DES) == ROUND_BIT + NORMALIZED_WR,
ENABLE_MOF_CORRECT ION, ALLOW_SHIFT_MAG_CORRECT ION,
SIGN == A_SIGN,
EXPONENT == EWR+MAG+MOF, UPDATE_FPSR, ATTEMPT_NEXT_EFA, RETURN;
TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA
TRUE D EFA S@ FL

SA ACN LZD

IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X

RB LS TAD DES D UFS

:;rd~I'I.L:;

Fl.!'']'
UI\SM

Instruction Set Microcode
Source File

00.10.00 0034 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15: 24: 34 RGG

Proprietary information of Data General Corporation

1026B .EJECT;
1027B .FT 1 "WLMP Source File Cycle 1 18-AUG-82 15:24:34 RGG"
1028B
1029B
1030B / *---.------------------------------ -.----- ----- - ------- - - - --- - - ---------- +
1031B* I
1032B* The code for the load map instruction illustrates the I
1033B* communication protocal with the 10 controller. Note I
1034B* all 10 commands are piped through TREG. This is the I
1035B* only CPD source which will make timing to the IOC. I
1036B* I
1037B* Although WMLP is a wide instruction, decode information I
1038B* starts the instruction as though it were narrow. This is I
1039B* to handle a peculiarity of the instruction in a convenient I
1040B* fashion (i.e. incrementing and sign extending the map slot I
1041B* counter in the first cycle). '.i:';,e ALU is placed in the wide I
1042B* mode at the end of the first cycle. I
1043B* I
1044B* +-----------------------.------------ -----------------------------------* /
1045B
1046B
1047 B / *----------------------------------------------------- - --------- - ------+
1048B* I I
1049B* I Wide Load Map I
1050B* I I
1051B* I WLMP I
1052B* I I
1053B* I FLAGO must be cleared by decode. I
1054B* I I
1055B* +----------------------------------------------------------------------* /
1056B

--0055--WLMP:
1058B
1059B Pre-increment and sign extend map slot counter to enter loop.
1060B Put ALU data paths in wide mode. Take privilege protection
1061B fault if not in ring o.
1062B
1063B IY = TREG == ZERO +1+ A(ACl),
1064B MODIFY_FLAGS_0123 (SET,N,N,N),
1065B IF RINGOO GOTO PRIVILEGE_PROTECTION;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP NRNGO PRIVILEG IY GN MFSO LT ACI ZR AD CAD PASS

S N N N

Decrement map slot counter. Check for interrupt BEFORE loading first
Map slot.

ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CA ADD PASS Y

IB
ACI

Rl R2 IA
Ml

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

addr is PRIVILEGE_PROTECTION (0003 *EXT*)

IY = ALU(ACl) = AG(AGl) == A(Ml) + TREG,
IF INTERRUPT_PENDING GOTO WLMP_INT;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CJMP INTR WLMP_INT AGI M IY TRG

--DFVs: addr is WLMP_INT (0063)
1072B
1073B

--00 57--WLMP_LOOP:
1075B

SAMPLES Instruction Set Microcode Rev
WLMP Source File Cycle
UASM 00.10.00 0035 - 01

--DFVs:
1066B
1067B
1068B
1069B

--0056-­
1071B

Assembled Examples



5-51

Proprietary information of Data General Corporation

1076B Isolate the map slot number from ACO and convert to an
1077B IOC register number by shifting left. Start read for
1078B the first double word to load in the map. If map slot
1079B counter is zero, there is nothing left to do.
1080B
1081B IY = ALU (GRO) =.. BIT_SHIFT_LEFT (SPAD (WASHM17) NOT_AND A(ACO» ,
1082B START AY == PASS (B(AG2) ) FOR READ_DOUBLE,
1083B IF ALU=O GOTO WLMP_DONE;

OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FZR WLMP_DON AG2 B PSB RD ACO GRO SC AD ANC BLO Y WASHM17

--DFVs: addr is WLMP_DONE (0064) const is WASHM17 (0031)
1084B
1085B There are still more map slots to load. Read the map data.
1086B

--0058-- CPM = ALU(GR2) == MEM_READ;
OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE R MM GR2 M

--DFVs:
1088B
1089B % Isolate high half of map data.
1090B

--0059-- IY = ALU <GRl) HElLSHIFT_RIGHT (R4,A(GR2) ;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE GR2 GRl AD HRO Y

R4
--DFVs:

1092B
1093B Form command to load high half of current map slot.
1094B

--005A-- IY = TREG = ALU(GRO) SPAD (IOCMDl) OR A(GRO);
OP TSEL ADDRESS DM AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE IY GN LT GRO GRO SC AD OR PASS Y IOCMDl

--DFVs: const is IOCMDl (0079)
1096B
1097B Send load command.
1098B Form data for high half of current map slot.
1099B

--005B-- PDR = IO_CONTROLLER == TREG,
1101B IY .. TREG == SPAD (IOCMD) OR A(GR1);

OP TSEL ADDRESS D AA AB AG AOP AL ST CN CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE IY TRG AT SIO LT GRI SC AD OR PASS IOCMD

--DFVs: cons\: is IOCMD (0078)
1102B
1103B Send data for high half of map slot.
1104B Increment address part of command to write low half of map slot.
1105B

--005C-- PDR = IO_CONTROLLER == TREG,
1107B IY = ALU (GRO) ZERO +1+ A(GRO);

OP TSEL ADDRESS DM AB AG AOP AL ST CM CP~l CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE TRG AT SIO GRO GRO ZR AD CAD PASS Y

--DFVs:
1108B
1109B Move command to load low hal f of current map slot to TREG.

SAMPLES Instruction Set Microcode Rev 1 09-DEC-82 10:47:39 RGG
\'/LMP Source File Cycle 1 18-AUG-82 15:24:34 RGG
UASM 00.10.00 0036 - 01

Assembled Examples



5-52

Propr ietary information of Data General Corporation

1110B % Wait until 10 is finished.
1111B

--005D--WL~IP_HLWAIT: CPM = TREG == ALU(GRO),
1113B IF IO_BUSY GOTO WLMP_HLWA IT;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP IOB WLMP_HL IA GN LT GRO

--DFVs: addr is WLMP_HLWAIT (005D)
1114B
1115B 10 is done. Increment map data pointer (by since they are double
1116B words) • Send clear command.
1117B

--005E-- AY = ALU(AC2) = AG(AG2) == B(AG2) + A(TWO),
1119B PDR = IO_CONTROLLER == ZERO;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
C,JMP FALSE TWO AG2 " ADD Y AG ZER AT SIO AC2 M

--DFVs:
1120B
1121B Form data fOl' low half of map slot.
1122B Send command to load low half of current map slot.
1123B

--005F-- IY = TREG == SPAD (IOCMD) OR A(GR2) ,
1125B PDR = IO_CONTROLLER == TREG;

01' TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
C~rMP FALSE IY TRG AT SIO LT GR2 SC AD OR PASS IOCMD

--DFVs: const is IOCMD (0078)
1126B
1127B Send data for low half of current map slot. Increment
1128B map slot number.
1129B

--0060-- PDR = IO_CONTROLLER == TREG,
1131B IY - ALU(ACO) = AG(AGO) == ZERO +1+ A(ACO);

Of' TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE AGO M IY TRG AT SIO ACO ACO ZR AD CAD PASS Y

--DFVs:
1132B
1133B % Wait here until 10 is finished.
1134B

--0061--WLMP_LO_WAIT: IF IO_BUSY GOTO WLMP_LO_WAIT;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CJMP IOB WLMP_LO_

Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X

09-DEC-82 10: 47: 39 RGG
18-AUG-82 15:24:34 RGG

10 is done. Send clear command and decrement slot counter.
Loop if an interrupt is not pending.

CPD = IO_CONTROLLER -= ZERO,
IY = ALU(ACl) = AG(AGl) -- A(Ml) + B(ACl),
IF NOT INTERRUPT_PENDING GOTO WLMP_LOOP;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl
CJMP NINTR WLMP_LOO AGI M IY N AT SIO

addr is WLMP_LOOP (0057)

IB ID RS lOP IY IL FR FS FOP W FeW FL FRG X
ACI BR DA ADD PASS Y

IA
Ml

R2

Rev
Cycle

Instruction Set Microcode
Source File

00.10.00 0037 - 01

--DFVs:
1136B
1137B
1138B
1139B

--0062-­
114lB
1142B

--DFVs:
1143B

SAMPLES
WLMP
UASM

Assembled Examples



5-53

Proprietary information of Data General Corporation

1144B
--006 3--WLMP_INT:

1146B
1147B Interrupt is pending. Correct the map slot counter, load PCX into
1148B PDR, and honor the interrupt.
1149B
1150B IY = ALU(ACll = AG(AGll == B(ACll - A(Mll,
1151B PDR == PC_OF_EXECUTION, GOTO RESTARTABLE_INTERRUPT;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
LEAP RESTARTA AGl M IY PCX Ml ACl BR AD CSR PASS Y

--DFVs: add, is RESTARTABLE_INTERRUPT (0004 *EXT*l
1152B
1153B

--0064--WLMP_DONE:
1155B
1156B Normal termination of WLMP instruction. Abort the pending
1157B read and IPOP.
1158B
1159B ABORT_MEMORY, ATTEMPT_NEXT_EFA, RETURN;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY
CRTN TRUE D EFA S@ A

IL FR FS FOP W FCW FL FRG X

--DFVs:

SAMPLES
WLMP
UASM

Instruction Set Microcode
Source File

00.10.00 0038 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Proprietary information of Data General Corporation

IL FR FS FOP W FCW FL FRG XID RS lOP IYIBIAR2

18-AUG-82 15:24:34 RGG"

Rl

Cycle 1Source File

OFFF; % WAIT
%========..===== = = === =..== ..
% WAIT for the IP
%
% Abort any outstanding memory starts and try to IPOP to
% the next instruction.
%=== === =••== = == == = ===== =..= =..== ..
ABORT_MEMORY, ATTEMPT_NEXT_EFA, RETURN;
TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
TRUE D EFA S@ A

1160B .EJEC'l';
1161B .FT 1 "IP_ALT
1162B
1163B
1164B .LOC
1165B
1166B
1167B
1168B
1169B
1170B

--OFFF--WAIT:
OP
CRTN

--DFVs:
1172B
1173B
1174 .END;

SAMPLES
IP_ALT
UASM

Instruction Set Microcode
Source File

00.10.00 0039 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-54

SYMBOL QUALIFIER TYPE VALUE
---------
.GLOBAL. PARSE 0003
AOPI CONST 0001
ALU_OP CONST 0007
FP_OP CONST 0002

+1+ ALU_OP CONST 0005
AOPI CONST 0000
ALU_OP CONST 0004
FP_OP CONST 0003

-1- ALU_OP CONST 0006
• BEGIN • COMMAND • COMMAND 0000
.EJECT • COMMAND. COMMAND 0000
.END .COMMAND. COMMAND 0000
• EXTERNAL • COMMAND. COMMAND 0000
•FT • COMMAND • COMMAND 0000
• HD • COMMAND • COMMAND 0000
.LOC • COMMAND. COMMAND 0000
• RADIX .COMMAND • COMMAND 0000
•TITLE .COMMAND • COMMAND 0000

AG_DEST PARSE 003A
CPM_DEST PARSE 0050
CPD_DEST PARSE 0067
ALU_DEST PARSE OOFS
FPU_DEST PARSE 0132
AGJjEST CONST 0000
CPM-DEST CONST 0000
CPD_DEST CONST 0000
ALU_DEST CONST 0000
EQUAL CONST 0000
ID_DEST CONST 0000
FPUJjEST CONST 0000

@+ FP_OP CONST 0000
A AGA PARSE 003F

IS PARSE 00F9
IR PARSE 0111
FR.-SRC PARSE 0135
FA_SRC PARSE 0144

ABORT_MEMORY • GLOBAL. PARSE 0040
ACO lAB CONST 0000
ACI lAB CONST 0001
AC2 lAB CONST 0002
AC3 lAB CONST 0003
ADD • GLOBAL. LABEL 0015
ADDI • GLOBAL. LABEL 001A
AG AG_DEST PARSE 002E

CPM-DEST PARSE 0049
PDR_SRC PARSE 0069
ALU_DEST PARSE OOFI
lR PARSE 0119

AGO AAB CONST 0000
AGI AAB CONST 0001
AG2 AAB CONST 0002
AG3 AAB CONST 0003
ALC_CRY CRY_RAND CONST 0009
ALC_RESULT TSKIP PARSE OOCE
ALLOW_SH I FT_MAG_CORRECT ION .GLOBAL. PARSE 013F
ALU AG_DEST PARSE 002B

CPM_DEST PARSE 0046
CPM-SRC PARSE 0055
ALU_DEST PARSE OOEB

*** Symbol Table
UASM 00.10.00 0001 - 02

Assembled Examples



SYMBOL QUALIFIER TYPE VALUE
---------

ALU=O TEST CONST 007D
TSKIP CONST 000 4

ALU_CRY CRY_RAND SET 0015
ALU_TEST • GLOBAL. PARSE 0122
AND ALU_OP CONST 0000
ARO AAB CONST 0008
ARI AAB CONST 0009
AR3 AAB CONST OOOB
AR5 AAB CONST OOOD
ATTEMPT_NEXT_EFA .GLOBAL. PARSE 0026
ATU_PURGING TEST CONST 0019
AY • GLOBAL. PARSE 0028

AG_OP PARSE 0029
A..-SIGN SGNR SET 0017
B AGB_SRC PARSE 003E

IS PARSE OOFA
IR PARSE 0112
ID_SRC PARSE 0129
FS_SRC PARSE 0138

BITO .GLOBAL. LABEL 0000
BIT16 .GLOBAL. LABEL 0010
BIT_SHIFT_LEFT IS PARSE 0105
CALL CONDITIONAL CONST 0001
CARRY • GLOBAL. PARSE OOEO
CASE_CINTO • GLOBAL. PARSE OOOE
CASE_DATA CPD_DEST PARSE 0062

ALU_DEST PARSE 00E9
CLEAR MF CONST 0002
CNST AGB_SRC PARSE 003C

IS PARSE OOFE
COMPLETE_JUMP .GLOBAL. PARSE 00 42
CPD • GLOBAL. PARSE 00 5C

IR PARSE OllC
CPD_ZERO IR PARSE OllD
CPM • GLOBAL. PARSE 00 45
CRE AG.J)EST PARSE 0039
DECREMENT_DES_POINTER .GLOBAL. PARSE 0071
DEFER_ON_FALSE_TEST .GLOBAL. PARSE OODB
DES AAB CONST OOOF

lAB CONST OOOF
FABC CONST OOOF

EJMP • GLOBAL. LABEL 0012
EJSR •GLOBAL. LABEL 0013
ELDA • GLOBAL. LABEL 0010
ELDB •GLOBAL. LABEL 0024
ELEF • GLOBAL. LABEL 0018
ENABLE_MOF_CORRECTION .GLOBAL. PARSE 0140
ESTA • GLOBAL. LABEL 0011
EWR+MAG+MOF EXPR CONST 0006
EXECUTE •GLOBAL. LABEL 0026
EXECUTE_DATA CP~DEST PARSE 004F
EXECUTE_PBX • GLOBAL. LABEL 002D
EXPONENT • GLOBAL. PARSE 0154
EXTEND_MICRO_CYCLE .GLOBAL. PARSE OODI
FA • GLOBAL. PARSE 013A

EXPR CONST 0001
FA+MOF EXPR CONST 000 5
FA-FB EXPR CONST 0003
FAD • GLOBAL. LABEL 00 52

*** Symbol Table
UASM 00.10.00 0002 - 02

5-55

Assembled Examples



5-56

SYMBOL QUALIFIER TYPE VALUE
---------

FAMO • GLOBAL. LABEL 0050
FAMS • GLOBAL. LABEL 004F
FAS • GLOBAL. LABEL 0052
FO • GLOBAL. PARSE 012E
FGO FABC CONST 0008

ALL_REGSS PARSE 0098
FLAG4=0 TEST CONST 004C
FLAG4=1 TEST CONST OOOC
FLOO • GLOBAL. LABEL 004A
FLOS • GLOBAL. LABEL 0049
FOR NEM-STR PARSE 0010
FPU FPU_OEST PARSE 012F
FP_HIGH CPM-OEST PARSE 004C

CPM_SRC PARSE 0056
FP_LOW CPM-OEST PARSE 004B

CPM_SRC PARSE 0057
FRND • GLOBAL. LABEL 0054
FSTO • GLOBAL. LABEL 004D
FSTS • GLOBAL. LABEL 004C
GOTO CONDITIONAL SET 0012

.GLOBAL. PARSE OOOB
GRO lAB CONST 0008
GRI lAB CONST 0009
GR2 lAB CONST OOOA
GR5 lAB CONST OOOD
HEX_SHIFT_RIGHT IS PARSE 0109
ID • GLOBAL. PARSE 0123
ID_SIGN=l TEST CONST 002D
IF • GLOBAL. PARSE 0001
INC .GLOBAL. LABEL 0016
INCREMENT_SRC_POINTER .GLOBAL. PARSE 006C
INDIRECT TEST CONST 0050
INTERRUPT_PENDING TEST CONST 0043
INWARD_REFERENCE TEST CONST 0052
IN_CURRENT_RING MEM_STR PARSE 001C
IOCMD • GLOBAL. LABEL 0078
IOCMDI .GLOBAL. LABEL 0079
IO_BUSY TEST CONST 0044
IO_CONTROLLER CPO_DEST PARSE 005F
IS)=IR TEST CONS1' 003A
IY • GLOBAL. PARSE 00E7
JMP • GLOBAL. I,ABEL 0012
JSR .GLOBAL. LABEL 0013
LAR IR PARSE OllA
LAST_LA AGB_SRC PARSE 003D
LOA • GLOBAL. LABEL 0010
LOB • GLOBAL. LABEL 0023
LEADING_ZERO_DETECT MAG_OP CONST 0007
LEF • GLOBAL. I,ABEL 0018
LFAMD • GLOBAL. LABEL 0050
LFAMS • GLOBAL. LABEL 004F
LFLDD • GLOBAL. LABEL 004A
LFLOS • GLOBAL. I,ABEL 0049
LFSTD • GLOBAL. I,ABEL 004D
LFSTS • GLOBAL. I,ABEL 004C
LJMP • GLOBAL. I,ABEL 0012
LJSR .GLOBAL. I,ABEL 0013
LLDB • GLOBAL. LABEL 0024
LLEF • GLOBAL. LABEL 0018

*** Symbol Table
UASM 00.10.00 0003 - 02

Assembled Examples



SYMBOL QUALIFIER TYPE VALUE
---------

LNLDA • GLOBAL. LABEL 0010
LNSBI • GLOBAL. LABEL OOlD
LNSTA • GLOBAL. LABEL 0011
LOAD_SIGNS • GLOBAL. PARSE 0153
LWLDA • GLOBAL. LABEL 0010
LWSBI .GLOBAL. LABEL ODIC
LWSTA • GLOBAL. LABEL 0011
Ml lAB CONST 0007
MEM_READ CP~SRC PARSE 0053
MEM_WRITE CP~DEST PARSE 004E

ALU_DEST PARSE 00F6
MODIFY_FLAGS_0123 .GLOBAL. PARSE 00C8
MODIFY_FLAGS_4567 .GLOBAL. PARSE 00C9
N MF CONST 0000
NADDI . GLOBAL. LABEL OOIB
NORMALIZED_WR FS_SRC CONST 0003
NORMAL_XCT • GLOBAL. LABEL 0029
NOT TEST PARSE 0002
NOTST .GLOBAL. LABEL 0040
NOT_AND ALU_OP CONST 0002
NSL • GLOBI\L. CONST 0022
NSP • GLOBAL. CONST 0020
NSTK_OVERFLOW .GLOBAL. XTRNL 0000
ONE -AAB CONST 0005
OR ALU_OP CONST 0001
PASS AGB_SRC PARSE 003B
PATU .GLOBAL. LABEL 0045
PATUW • GLOBAL. LABEL 0046
PC AG_DEST PARSE 002A

PDR_SRC CONST 0006
PC_OF_EXECUTION PDlLSRC CONST 0005
PC_REL_INDEX TEST CONST 005F
PDR • GLOBAL. PARSE 005B

ALU_DEST PARSE OOEA
IS PARSE OOFB
IR PARSE 0113

POINT_SRC_TO .GLOBAL. PARSE 006F
PRESCALED_WR FS_SRC CONST 0002
PRESCALE_OPERAND WlLSEL PARSE 014C
PRIVILEGE_PROTECTION .GLOBAL. XTRNL 0003
PROTECTION_FAULT .GLOBAL. XTRNL 0002
PRT_RMX • GLOBAL. CONST 0004
PSH • GLOBAL. LABEL 003C
PSHL • GLOBAL. LABEL 0041
PSHM • GLOBAL. LABEL 003F
PURGE_THE_ATU_CACHE .GLOBAL. PARSE OODA
Rl RSHIFT CONST 0000
R4 RSHIFT CONST 0003
READ_BYTE ME~STR CONST 0003
READ_DOUBLE ME~STR CONST 0002
READ_PC_BYTE • GLOBAL. LABEL OOlF
READ_WORD ME~STR CONST 0001
RESTARTABLE_INTERRUPT .GLOBAL. XTRNL 0004
RETURN • GLOBAL. PARSE 0007
RETURN_ELSE_GOTO CONDITIONAL CONST 0004
RETURN_PC PDlLSRC CONST 0004
RING<>O TEST CONST 0011
RMAX_PROTECTION .GLOBAL. LABEL 0019
ROUND_BIT FlLSRC CONST 0002

*** Symbol Table
UASM 00.10.00 0004 - 02

5-57

Assembled Examples



5-58

SYMBOL QUALIFIER TYPE VALUE
---------

SELECTED_A FR.-SRC PARSE 0134
SET MF CONST 0001
SHIFT_MAG • GLOBAL. PARSE ODD
SIGN • GLOBAL. PARSE 0152
SKIP_ON • GLOBAL. PARSE OOCC
SL lAB CONST 0005
SP AAB CONST 0004
SPAD ALU_DEST PARSE OOEC

IS PARSE 0100
ID_SRC PARSE 012A

SPAR • GLOBAL. PARSE ooeF
R_SPAD PARSE 0101

SPAR.-TABLE_OFFSET ALU_DEST PARSE OOEF
SRC AAB CONST OOOE

lAB CONST OOOE
FABC CONST OOOE

SRCODES TEST CONST 006E
SRC=DES TEST CONST 002E
SRC_POINTER IR PARSE 0115
STA • GLOBAL. LABEL 0011
START • GLOBAL. PARSE 0019
START_EXECUTE .GLOBAL. PARSE 0025
SUBL .GLOBAL. LABEL 0017
TOGGLE MF CONST 0003
TREG CPM.-DEST PARSE 0048

PDR_SRC CONST 0002
ALU_DEST PARSE OOFO
IR PARSE 011B

TRUNCATED_IF_NOT_ROUNDING .GLOBAL. PARSE 0139
TWO AAB CONST 0006
UPDATE_FPSR • GLOBAL. PARSE 0148
UPDATE_OVR • GLOBAL. PARSE 00E3
WADDI • GLOBAL. LABEL 001B
WAIT • GLOBAL. LABEL OFFF
WASHM17 .GLOBAL. {,ABEL 0031
WBITW .GLOBAL. {,ABEL 0036
WBITWI .GLOBAL. LABEL 0037
WBITW2 • GLOBAL. LABEL 0038
WBR .GLOBAL. {,ABEL 0012
WCOB • GLOBAL. LABEL 003A
WCOBI .GLOBAL. LABEL 003B
WCOBTAB • GLOBAL. LABEL 0000
WIDE_JUMP MEM_STR PARSE OOIF
WITH_WORD_ADDRESSING MEM.-STR PARSE OOIB
WLDB • GLOBAL. {,ABEL 0023
\'ILMP • GLOBAL. LABEL 0055
WLMP_DONE • GLOBAL. LABEL 0064
WLMP_HCWAIT • GLOBAL. LABEL 005D
WL~IP_INT • GLOBAL. LABEL 0063
WLMP_LOOP • GLOBAL. LABEL 0057
WLMP_LO_WAIT • GLOBAL. LABEL 0061
WNADI • GLOBAL. {·ABEL OOIB
WORD_ZERO_EXTEND IS PARSE OIOE
WPSH .GLOBAL. LABEL 0042
WPSHT • GLOBAL. LABEL 0044
WPSH_LOOP .GLOBAL. LABEL 0043
WR FPU_DEST PARSE 0131

.GLOBAL. PARSE 014B
WRITE_BYTE MEM.-STR CONST 0007

*** Symbol Table
UASM 00.10.00 0005 - 02

SYMBOL QUALIFIER TYPE VALUE
---------

WRITE_DOUBLE MEM.-STR CONST 0006
WRITE_PC_BYTE .GLOBAL. LABEL 0021
WRITE_WORD MEM.-STR CONST 0005
WSTK_OVERFLOW .GLOBAL. XTRNL 0001
WSZBO • GLOBAL. LABEL 0030
WSZBOBIT • GLOBAL. LABEL 0035
WSZBONRM . GLOBAL. LABEL 0032
XCT • GLOBAL. LABEL 0026
XCTED_INSTRUCTION TEST CONST 0006
XCTOP • GLOBAL. LABEL 00C3
XCT_WAITI • GLOBAL. LABEL 002B
XCT_WAIT2 .GLOBAL. LABEL 002C
XFAMD • GLOBAL. LABEL 0050
XFAMS • GLOBAL. LABEL 004F
XFLDD • GLOBAL. LABEL 004A
XFLDS . GLOBAL. LABEL 0049
XFSTD .GLOBAL. LABEL 004D
XFSTS .GLOEAL. LABEL 004C
XJMP • GLOBAL. LABEL 0012
XJSR • GLOBAL. LABEL 0013
XLDB .GLOB/\L. LABEL 0024
XLEF • GLOBAL. LABEL 0018
XLSBI .GLOBAL. LABEL ODIE
XNLDA • GLOBAL. LABEL 0010
XNSBI • GLOBAL. LABEL OOlD
XNSTA • GLOBAL. LABEL 0011
XWLDA • GLOBAL. LABEL 0010
XWSBI • GLOBAL. LABEL ODIC
XWSTA • GLOBAL. LABEL 0011
ZERO PDR.-SRC CONST OOOF

CPD_SRC PARSE 006A
IS PARSE DOFF

• FS_SRC CONST 0001

•
•

Symbol Table
UASM 00.10.00 0006 - 02

Assembled Examples



SYMBOL REFERENCES
----------

&: • GLOBAL. 489-01
+:AOP1 87-01 92-01 97-01 102-01 107-01 113-01

118-01 123-01 128-01 133-01 138-01 143-01
148-01 153-01 158-01 423-01 430-01 568-01
606-01 623-01 660-01 708-01 723-01 737-01
742-01 858-01 908-01 959-01 1118-01

+:ALU_OP 258-01 334-01 338-01 1070-01 1141-01
+:FP_OP 863-01 1017-01
+l+:ALU_OP 262-01 1063-01 1107-01 1131-01
-:AOPI 785-01
-:ALU_OP 266-01 421-01 428-01 714-01 741-01 1150-01
-:FP_OP 998-01
-l-:ALU_OP 373-01
.BEGIN:.COMMAND. 4-01
• EJ ECT : • COMMAND. 1-01 30-01 55-01 162-01 234-01 270-01

376-01 462-01 531-01 665-01 747-01 792-01
1026-01 1160-01

• END: • COMMAND • 1174-01
• EXTERNAL:.COMMAND. 23-01
• FT : • COMMAND. 8-01 31-01 56-01 163-01 235-01 271-01

377-01 463.,.01 532-01 666-01 748-01 793 -01
1027-01 1161-01

.HD:.COMMAND. 5-01 6-01
• LOC : • COMMAND. 1164-01 1164-01
.RADIX: .COMMAND. 7-01 29-01 7-01 29-01
.TITLE: .COMMAND. 2-01
=:AG_DEST 87 -01 87-01 92-01 92-01 97-01 97-01

102-01 102-01 107-01 107-01 113-01 113-01
118-01 118-01 123-01 123-01 128-01 128-01
133-01 13 3-01 138-01 138-01 143-01 143 -01
148-01 148-01 153 -01 153-01 158-01 158-01
606-01 660-01 660-01 708-01 723-01 737-01
742-01 785-01 791-01 1118-01 1118-01

=:CPM_DEST 195-01 195-01 202-01 314-01 365-01 369-01
459-01 459-01 503-01 528-01 575-01 619-01
702-01 707-01 713-01 722-01 740-01 833-01
856-01 863-01 885-01 907 -01 912-01 936-01
958-01 966-01 1087-01 1112-01

=:CPD_DEST 653-01 1100-01 1106-01 1119-01 1125-01 1130-01
1140-01

=:ALU_DEST 88-01 88-01 93-01 93-01 98-01 98-01
103-01 103-01 108-01 108-01 114-01 114-01
119-01 119-01 124-01 124-01 129-01 129-01
134-01 134-01 139-01 139-01 144-01 144-01
149-01 149-01 154-01 154-01 159-01 159-01
232-01 232-01 258-01 258-01 262-01 262-01
266-01 266-01 306-01 306-01 313-01 334-01
334-01 338-01 338-01 373-01 421-01 428-01
499-01 523-01 527 -01 561-01 569-01 574-01
579-01 591-01 661-01 717-01 745-01 788-01

1063-01 1070-01 1070-01 1081-01 1091-01 1095-01
1095-01 1101-01 1107-01 1124-01 1131-01 1131-01
1141-01 1141-01 1150-01 1150-01

=:FPU_DEST 1008-01 1017-01
==:AG_DEST 87-01 92-01 97-01 102-01 107-01 113-01

118-01 123-01 128-01 133-01 138-01 143-01
148-01 153-01 158-01 366-01 370-01 423-01
430-01 442-01 568-01 590-01 606-01 613-01
623 -01 660-01 698-01 703-01 708-01 715-01

*** Symbol Cross Reference
UASM 00.10.00 0001 - 03

5-59

Assembled Examples



5-60

SYMBOL REFERENCES
_._--------

723-01 737-01 742-01 785-01 791-01 858-01
908-01 959-01 1082-01 1118-01

==:CPM_DEST 195-01 202-01 314-01 365-01 369-01 459-01
503-01 528-01 575-01 619-01 702-01 707-01
713-01 722-01 740-01 833-01 856-01 863-01
885-01 907-01 912-01 936-01 958-01 966-01

L087-01 1112-01
==:CPD_DEST 230-01 457 -01 653-01 713-01 740-01 784-01

.LI00-01 1106-01 1119-01 1125-01 1130-01 1140-01

.LI51-01
==:ALU_DEST 88-01 93-01 98-01 103-01 10 8-01 114-01

119-01 124-01 129-01 134-01 13 9-01 144-01
149-01 154-01 159-01 232-01 258-01 262-01
266-01 306-01 313-01 334-01 338-01 373-01
421-01 428-01 499-01 523-01 527-01 561-01
569-01 574-01 579-C 584-01 591-01 661-01
717-01 745-01 788-01 1063-01 1070-01 1081-01

1091-01 1095-01 1101-01 1107-01 1124-01 1131-01
1141-01 1150-01

==: EQUAL 89-01 94-01 99-01 104-01 109-01 115-01
120-01 125-0J 13 0-01 135-01 140-01 145-01
150-01 155-01 160-01 259-01 263-01 267-01
339-01 374-01 563-01 662-01 714-01 741-01
834-01 834-01 857 -01 857-01 999-01 999-01

1009-01 1009-01 1019-01 1020-01
==:ID_DEST 491-01 562-01
==:FPU_DEST 863-01 998-01 1008-01 1017-01
@+:FP_OP 1008-01
A:AGA 87-01 92-01 97-01 102-01 107-01 113-01

118-01 123-01 128-01 13 3-01 138-01 143-01
148-01 153-01 158-01 423-01 430-01 568-01
606-01 623-01 660-01 708-01 723-01 737-01
742-01 785-01 858-01 908-01 959-01 1118-01

A:lS 89-01 94-01 99-01 104-01 109-01 115-01
120-01 125-01 130-01 135-01 140-01 145-01
150-01 155-01 160-01 338-01 373-01 579-01
584-01 662-01 788-01 1070-01 1141-01

A:lR 232-01 258-01 262-01 266-01 421-01 428-01
499-01 523-01 527 -01 561-01 569-01 574-01
591-01 745-01 1063-01 1081-01 1091-01 1095-01

1101-01 1107-01 1124-01 1131-01 1150-01
A:FR_SRC 863-01 998-01
A:FA..-SRC 834-01 857-01
ABORT_MEMORY: • GLOBAL. 308-01 312-01 421-01 428-01 607-01

614-01 745-01 1159-01 1171-01
ACO: lAB 1081-01 1131-01 1131-01
ACl: lAB 1063-01 1070-01 1141-01 1141-01 1150-01 1150-01
AC2: lAB 1118-01
AC3: lAB 232-01
ADD: • GLOBAL. 258*01
ADDl: • GLOBAL. 334*01
AG:AG-J)EST 87-01 92-01 97-01 102-01 107-01 113-01

118-01 123-01 128-01 133-01 138-01 143-01
148-01 153-01 158-01 606-01 660-01 708-01
723-01 737-01 742-01 1118-01

AG:CPM_DEST 195-01 314-01 459-01 619-01 702-01
AG:PDILSRC 653-01 713-01 740-01
AG:ALU_DEST 232-01 258-01 262-01 266-01 306-01 334-01

338-01 421-01 428-01 561-01 745-01 788-01
Symbol Cross Reference

UASM 00.10.00 0002 - 03

Assembled Examples



SYMBOL REFERENCES
----------
1070-01 1131-01 1141-01 1150-01

AG:IR 741-01
AGO :AAB 1131-01
AGI :AAB 1070-01 1141-01 1150-01
AG2:AAB 1082-01 1118-01 1118-01
AG3 :AAB 232-01
ALC_CRY : CRY_RAND 259-01 263-01 267-01
ALC_RESULT:TSKIP 259-01 263-01 267-01
ALLOW_SHIFT_MAG_CORRECTION : • GLOBAL. 1018-01
ALU: AG_DEST 87-01 92-01 97-01 102-01 107-01 113-01

118-01 123-01 128-01 133-01 13 8-01 143 -01
148-01 153-01 158-01 660-01 1118-01

ALU: CP/-LDEST 195-01 365-01 369-01 459-01 707-01 1087-01
ALU:CP/-LSRC 202-01 314-01 503-01 528-01 713-01 722-01

740-01 1112-01
ALU :ALU_DEST 232-01 258-01 262-01 266-01 306-01 313-01

334-01 338-01 523-01 574-01 1070-01 1081-01
1091-01 1095-01 1107-01 1131-01 1141-01 1150-01

ALU=O:TEST 85-01 1083-01
ALU=O:TSKIP 585-01
AL U_CRY : CRY_RAND 339-01 374-01
ALU_TEST: • GLOBAL. 89-01 94-01 99-01 104-01 109-01 115-01

120-01 125-01 130-01 135-01 140-01 145-01
150-01 155-01 160-01 662-01 714-01 741-01

AND:ALU_OP 89-01 94-01 99-01 104-01 109-01 115-01
120-01 125-01 130-01 13 5-01 140-01 145-01
150-01 155-01 160-01 232-01 569-01 574-01
584-01 591-01 662-01 745-01 788-01

ARO:AAB 421-01 423-01 428-01 430-01 561-01 568-01
590 -01 623-01 702-01 708-01 708-01 713-01
723-01 723-01 788-01 791-01

ARl:AAB 606-01 613-01 619-01 623-01
AR3 :AAB 785-01 785-01
AR5:AAB 314-01
ATTEMPT_NEXT_EFA: • GLOBAL. 85-01 195-01 202-01 233-01 260-01

264-01 268-01 308-01 334-01 340-01 375-01
459-01 512-01 583 -01 717-01 745-01 835-01
864-01 885-01 912-01 1020-01 1159-01 1171-01

ATU_PURGING:TEST 784-01
AY: • GLOBAL. 87-01 92-01 97-01 102-01 107-01 113-01

118-01 123-01 128-01 133-01 138-01 143-01
148-01 153-01 158-01 660-01 785-01 1118-01

AY:AG_OP 366-01 370-01 423-01 430-01 442-01 568-01
590-01 606-01 613-01 623-01 698-01 703-01
708-01 715-01 723-01 737-01 742-01 791-01
858-01 908-01 959-01 1082-01

A_SIGN:SGNR 1019-01
B:AGB_SRC 442-01 568-01 590-01 613-01 623-01 708-01

723-01 785-01 791-01 1082-01 1118-01
B: IS 258-01 266-01 334-01 569-01 591-01 714-01

741-01 1150-01
B: IR 1141-01
B: ID_SRC 562-01
B:FS_SRC 998-01
BITO:.GLOBAL. 306-01 523-01
BIT16:.GLOBAL. 563-01
BIT_SIHFT_LEFT: IS 266-01 1081-01
C!\LL: CONDITION!\L 457-01 570-01 709-01
C!\/{HY: • GLUBAL. 259-01 263-01 267-01 339-01 374-01

Symbol Cross Reference
UMiM 00.10.00 0003 - 03

5-61

Assembled Examples



5-62

SYMBOL REFERENCES
----------

CASE_4_INTO: .GLOBAL. 90-01 95-01 100-01 105-01 110-01
116 -01 121-01 126-01 131-01 136-01 141-01
146-01 151-01 156 -01 161-01 663-01

CASE_DATA:CPD_DEST 653 -01
CASE_DATA:ALU_DEST 88-01 93-01 98-01 103-01 108-01 114-01

119-01 124-01 129-01 134-01 139-01 144-01
149-01 154-01 159-01 661-01

CLEAR:MF 504-01
CNST :AGB_SRC 87-01 92-01 97-01 102-01 107-01 113-01

118-01 123-01 128-01 133-01 138-01 143-01
148-01 153-01 158-01 606-01 660-01 698-01
703-01 715-01 737-01 742-01

CNST: IS 313-01
COMPLETE_JUMP:.GLOBAL. 215-01 230-01
CPD: • GLOBAL. 1140-01
CPD: IR 714-01
CPD_ZERO: IR 313-01 717-·01
CPM: • GLOBAL. 195-01 202-01 314-01 365-01 369-01 459-01

503-01 528-01 575-01 619-01 702-01 707-01
713-01 722-01 740-01 833-01 856-01 863-01
885-01 907-0] 912-01 936-01 958-01 966-01

1087-01 1112-01
CRE:AGJ)EST 785-01
DECREMENT_DES_POINTER: • GLOBAL. 709-01
DEFElLON_FALSE_TEST: • GLOBAL. 608-01 615-01
DES:AAB 87-01 87-01 92-01 92-01 97-01 97-01

102-01 102-01 107-01 107-01 113-01 113-01
118-01 118-01 123-01 123-01 128-01 128-01
133-01 13 3-01 13 8-01 138-01 143-01 143-01
148-01 148-01 153-01 153-01 158-01 158-01
195-01 258-01 262-01 266-01 306-01 334-01
338-01 459-01 660-01 660-01

DES: lAB 87-01 92-01 97-01 102-01 107-01 113-01
118-01 123-01 128-01 133-01 138-01 143-01
148-01 153-01 158-01 195-01 202-01 258-01
258-01 262-01 266-01 266-01 306-01 314-01
334-01 334-01 338-01 338-01 459-01 499-01
503-01 523-01 561-01 569-01 591-01 660-01

DES:FABC 833-01 834-01 856-01 857-01 863-01 863-01
885-01 907-01 912-01 998-01 1008-01 1017-01

EJMP: • GLOBAL. 214*01
EJ SR: • GLOBAL. 229*01
ELDA: • GLOBAL. 194*01
ELDB: • GLOBAL. 457*01
ELEF: • GLOBAL. 305*01
ENABLE_MOF_CORRECTION: • GLOBAL. 1018-01
ESTA: • GLOBAL. 201*01
EWR+MAG+MOF: EXPR 1020-01
EXECUTE: • GLOBAL. 488* 01
EXECUTE_DATA: CPM-DEST 503-01 528-01
EXECUTE_PBX:.GLOBAL. 522*01 496-01
EXPONENT: • GLOBAL. 834-01 857-01 999-01 1009-01 1020-01
EXTEND_MICRO_CYCLE: • GLOBAL. 307-01
FA: .GLOBAL. 834-01 857-01
FA:EXPR 834-01 857-01
FA+MOF:EXPR 1009-01
FA-FB:EXPR 999-01
FAD: • GLOBAL. 997*01 966-01
FAMD: • GLOBAL. 958*01

*** Symbol Cross Reference
UASM 00.10.00 0004 - 03

Assembled Examples



SYMBOL REFERENCES
----------

FAMS : • GLOBAL: 936*01
FAS: • GLOBAL. 998*01 936-01
FD: • GLOBAL. 863-01 998-01 1008-01 1017-01
FGO:FABC 936-01 958-01 966-01
FGO :ALL_REGSS 936-01 960-01
FLAG4=0: TEST 510-01
FLAG4=1:TEST 513-01
FLDD: • GLOBAL. 856*01
FLDS:.GLOBAL. 833*01
FOR:ME~STR 366 -01 370-01 423-01 430-01 442-01 568-01

590-01 606-01 613-01 623-01 698-01 703-01
708-01 715-01 723-01 737-01 742-01 791-01
858-01 908-01 959-01 1082-01

FPU:FPU_DEST 1017-01
FP_HIGH: CP~DEST 833-01 856-01 936-01 958-01
FP_HIGH:CP~SRC 885-01 907-01
FP_LOW:CP~DEST 863-01 966-01
FP_LOW:CP~SRC 912-01
FRND: • GLOBAL. 1017*01
FS TD: • GLOBAL. 907*01
FS TS : • GLOBAL. 885* 01
GOTO :CONDITIONAL 491-01 496-01 510-01 564-01 743-01 779-01

784-01 1065-01 1071-01 1083-01 1113-01 1135-01
1142-01

GOTO: • GLOBAL. 215-01 314-01 367-01 371-01 442-01 489-01
505-01 530-01 592-01 609-01 791-01 936-01
966-01 1151-01

GRO: lAB 313-01 365-01 369-01 373-01 574-01 579-01
584-01 1081-01 1095-01 1095-01 1107-01 1107-01

1112-01
GRl: lAB 707 -01 714-01 1091-01 1101-01
GR2: lAB 1087-01 1091-01 1124-01
GR5: lAB 523-01 527-01 528-01
HEX_SHIFT_RIGHT:IS 88-01 93-01 98-01 103-01 108-01 114-01

119-01 124-01 129-01 134-01 139-01 144-01
149-01 154-01 159-01 561-01 661-01 1091-01

ID: • GLOBAL. 491-01 562-01
ID_SIGN=l: TEST 496-01 570-01
IF: .GLOBAL. 85-01 309-01 457-01 491-01 496-01 510-01

513-01 564-01 570-01 624-01 709-01 718-01
724-01 743 -01 746 -01 779-01 784-01 1065-01

1071-01 1083-01 1113-01 1135-01 1142-01
INC: .GLOBAL. 262* 01
INCREMENT_SRC_PO INTER: • GLOBAL. 724-01 743-01
INDIRECT:TEST 624-01
INTERRUPT_PENDING:TEST 1071-01 1142-01
INWARD_REFERENCE:TEST 309-01
IN_CURRENT_RING:MEM_STR 590-01
IOCMD: • GLOBAL. 1101-01 1124-01
IOCMDl: • GLOBAL. 1095-01
IO_BUSY: TEST 1113-01 1135-01
IO_CONTROLLER: CPD_DEST 1l00-01 1l06-01 1119-01 1125-01 1130-01

1140-01
IS>=IR:TEST 718-01 746-01
IY: • GLOBAL. 88-01 93-01 98-01 103-01 108-01 114-01

119-01 124-01 129-01 134-01 139-01 144-01
149-01 154-01 159-01 232-01 258-01 262-01
266 -01 306-01 313-01 334-01 338-01 373-01
421-01 428-01 499-01 523-01 527-01 561-01

Symbol Cross Reference ***
UASM 00.10.00 0005 - 03

5-63

Assembled Examples



5-64

SYMBOL REFERENCES
----------

569-01 574-01 579-01 584-01 591-01 661-01
717-01 745-01 788-01 1063-01 1070-01 1081-01

1091-01 1095-01 1101-01 1107-01 1124-01 1131-01
1141-01 1150-01

JMP: • GLOBAL. 215*01 791-01
JSR: • GLOBAL. 230*01
LAR: IR 306-01 334-01 338-01
LAST_LA: AGB_SRC 366-01 370-01 423-01 430-01 858-01 908-01

959-01
LDA: • GLOBAL. 195*01 442-01
LDB: • GLOBAL. 442*01
LEADING_ZERO_DETECT:MAG_OP 1009-01
LEF: • GLOBAL. 306*01
LFAMD: .GLOBAL. 956 * 01
LFAMS:.GLOBAL. 934*01
LFLDD: • GLOBAL. 854*01
LFLDS : • GLOBAL. 831 *01
LFSTD: • GLOBAL. 905*01
LFSTS: • GLOBAL. 883*01
LJMP: • GLOBAL. 212* 01
LJSR: • GLOBAL. 227*01
LLDB : • GLOBAL. 455* 01
LLEF: • GLOBAL. 303*01
LNLDA: • GLOBAL. 192*01
LNSBI: • GLOBAL. 369*01
LNSTA:.GLOBAL. 199*01
LOAD_SIGNS:.GLOBAL. 998-01 1009-01
LWLDA: • GLOBAL. 190 * 01
LWSB I : • GLOBAL. 365*01
LWSTA: • GLOBAL. 197*01
Ml: lAB 89-01 94-01 99-01 104-01 109-01 115-01

120-01 125-01 130-01 135-01 140-01 145-01
150-01 155-01 160-01 232-01 421-01 428-01
569-01 574-01 591-01 662-01 745-01 788-01

1070-01 1141-01 1150-01
MEM_READ:CP~SRC 195-01 365-01 369-01 459-01 575-01 619-01

702-01 707-01 833-01 856-01 863-01 936-01
958-01 966-01 1087-01

MEM_WRITE:CP~DEST 202-01 713-01 722-01 740-01 885-01 907-01
912-01

MEM_WRITE:ALU_DEST 373-01 579-01 717-01
MODIFY_FLAGS_O 123: • GLOBAL. 1064-01
MODIFY_FLAGS_4567:.GLOBAL. 504-01 509-01 512-01 530-01
N:MF 504-01 504-01 504-01 509-01 509-01 509-01

512-01 512-01 512-01 530-01 530-01 530-01
1064-01 1064-01 1064-01

NADDI: • GLOBAL. 338*01
NORMALIZED_WR:FS_SRC 1017-01
NORMAL_XCT: • GLOBAL. 498*01 491-01
NOT:TEST 309-01 491-01 624-01 1142-01
NOTST: • GLOBAL. 717*01
NOT_AND :ALU_OP 306-01 1081-01
NSL: • GLOBAL. 703-01
NSP: • GLOBAL. 698-01 715-01
NSTK_OVERFLOW: • GLOBAL. 23*01 718-01
ONE:AAB 708-01 723-01
OR:ALU_OP 313-01 523-01 527-01 579-01 717-01 1095-01

1101-01 1124-01
PASS:AGB_SRC 366 -01 ,370-01 442-01 590-01 613-01 698-01

*** Symbol Cross Reference ***
UASM 00.10.00 0006 - 03

Assembled Examples



SYMBOL REFERENCES
----------

703-01 715-01 791-01 1082-01
PATU: • GLOBAL. 776*01
PATUW: .GLOBAL. 784*01 784-01
PC:AG_DEST 791-01
PC:PDR-SRC 784-01
PC_OF_EXECUTION: PDR_SRC 457 -01 1151-01
PC_REL_INDEX:TEST 457 -01
PDR: • GLOBAL. 230-01 457-01 653-01 713-01 740-01 784-01

1100-01 1106-01 1119-01 1125-01 1130-01 1151-01
PDR:ALU_DEST 88-01 93-01 98-01 103-01 108-01 114-01

119-01 124-01 129-01 134-01 139-01 144-01
149-01 154-01 159-01

PDR: IS 232-01 421-01 428-01 717-01 745-01
PDR: IR 88-01 89-01 93-01 94-01 98-01 99-01

103-01 104-01 108-01 109-01 114-01 115-01
119-01 120-01 124-01 125-01 129-01 130-01
13 4-01 135-01 139-01 140-01 144-01 145-01
149-01 150-01 154-01 155-01 159-01 160-01
661-01 662-01 788-01

POINT_SRC_TO:.GLOBAL. 936-01 960-01
PRESCALED_WR:FS_SRC 1008-01
PRESCALE_OPERAND:WR-SEL 999-01
PRIVILEGE_PROTECTION: • GLOBAL. 26*01 77 9-01 1065-01
PROTECTION_FAULT:.GLOBAL. 25*01 314-01
PRT_RMX: • GLOBAL. 313-01
PSH:.GLOBAL. 698*01
PSHL: • GLOBAL. 722* 01 709-01 724-01
PSHM:. GLOBAL. 713*01
PURGE_THE_ATU_CACHE: • GLOBAL. 788-01
R1 :RSHIFT 88-01 93-01 98-01 103-01 108-01 114-01

119-01 124-01 129-01 134-01 139-01 144-01
149-01 154-01 159-01 561-01 661-01

R4:RSHIFT 1091-01
READ_BYTE: MEM_STR 423-01 442-01
READ_DOUBLE:MEM-STR 606-01 613-01 858-01 959-01 1082-01
READ_PC_BYTE: • GLOBAL. 420*01 457-01
READ_WORD: MEM_STR 698-01 703-01
RESTARTABLE_INTERRUPT: • GLOBAL. 27*01 1151-01
RETURN: • GLOBAL. 195-01 202-01 233-01 260-01 264-01 268-01

334-01 340-01 375-01 424-01 431-01 459-01
586-01 835-01 864-01 885-01 912-01 1020-01

1159-01 1171-01
RETURN_ELSE_GOTO:CONDITIONAL 85-01 309-01 513-01 624-01 718-01

724-01 746-01
RETURN_PC:PDR-SRC 230-01
RINGOO:TEST 77 9-01 1065-01
RMAX_PROTECTION:.GLOBAL. 311*01 309-01
ROUND_BIT:FR_SRC 1017-01
SELECTED_A:FR_SRC 1008-01
SET:MF 530-01 1064-01
SHIFT_MAG: • GLOBAL. 1009-01
SIGN: • GLOBAL. 1019-01
SKIP_ON:.GLOBAL. 259-01 263-01 267-01 585-01
SL: lAB 741-01
SP:AAB 737-01 737-01 740-01 741-01 742-01 742-01

745-01
SPAD:ALU_DEST 499-01 527 -01
SPAD: IS 306-01 523-01 574-01 1081-01 1095-01 1101-01

1124-01
*** Symbol Cross Reference

UASM 00.10.00 0007 - 03

5-65

Assembled Examples



5-66

SYMBOL REFERENCES
----------

SPAD:lD_SRC 491-01
SPAR: • GLOBAL. 563-01
SPAR:R_SPAD 574-01
SPAR_TABLE_OFFSET:ALU_DEST 569-01 591-01
SRC:AAB 442-01 568-01 606-01 653-01
SRC: lAB 258-01 262-01 266-01 562-01 713-01 722-01

740-01
SRC: FABC 998-01 1008-01
SRC<>DES:TEST 709-01 743-01
SRC=DES:TEST 564-01 724-01
SRC_POlNTER:IR 373-01
STA: • GLOBAL. 202*01
START: • GLOBAL. 366-01 370-01 423-01 430-01 442-01 568-01

590-01 606-01 613-01 623-01 698-01 703-01
708-01 715-01 723-01 737-01 742-01 791-01
858-01 908-01 95<) J1 1082-01

START_EXECUTE:. GLOBAL. 499-01 523-01
SUBL: • GLOBAL. 266*01
TOGGLE:MF 509-01 512-01
TREG: CPM_DEST 575-01 1112-01
TREG: PDILSRC 1100-01 1106-01 1125-01 1130-01
TREG: ALU_DEST 1063-01 1095-01 1101-01 1124-01
TREG: IR 579-01 584-01 1070-0.1
TRUNCATED_IF_NOT_ROUNDING: • GLOBAL. 1008-01
TWO:AAB 858-01 908-01 959-01 1118-01
UPDATE_FPSR: .GLOBAL. 834-01 857-01 1020-01
UPDATE_OVR: • GLOBAL. 339-01 374-01
WADDI:.GLOBAL. 336*01
WAIT:. GLOBAL. 1171*01 215-01
WASHM17: • GLOBAL. 1081-01
WBITW: • GLOBAL. 606*01 570-01
WBITWl: • GLOBAL. 613*01 624-01
WBITW2:.GLOBAL. 619*01 609-01
WBR: • GLOBAL. 211*01
WCOB: • GLOBAL. 653 *01
WCOB1 : • GLOBAL. 660*01 85-01
WCOBTAB: • GLOBAL. 85*01 90-01 95-01 100-01 105-01 110-01

116-01 121-01 126-01 131-01 136-01 141-01
146-01 151-01 156-01 161-01 663-01

WIDE_JUMP:MEM-STR 791-01
WITH_WORD_ADDRESSING: MEM-STR 423-01 430-01
WLDB: • GLOBAL. 441*01
WLMP: • GLOBAL. 1057*01
WLMP_DONE: • GLOBAL. 1154*01 1083-01
WLMP_HCWAIT: • GLOBAL. 1112*01 1113-01
WLMP_INT: • GLOBAL. 1145*01 1071-01
WLMP_LOOP: .GLOBAL. 1074*01 1142-01
WLMP_LO_WAIT: • GLOBAL. 1135*01 1135-01
WNADI: • GLOBAL. 337*01
WORD_ZERO_EXTEND:IS 499-01
WPSH: • GLOBAL. 737* 01
WPSHT: • GLOBAL. 745* 01
WPSH_LOOP:.GLOBAL. 739*01 743-01
WR:FPU-.DEST 1008-01
WR: • GLOBAL • 999-01
WRITE_BYTE:MEM-STR 430-01
WRITE-.DOUBLE:MEM-STR 366-01 737-01 742-01 908-01
WRITE_PC_BYTE: • GLOBAL. 427*01
WRITE_WORD:MEM-STR 370-01 568-01 590-01 623-01 708-01 715-01

*** Symbol Cross Reference ***
UASM 00.10.00 0008 - 03

Assembled Examples



SYMBOL REFERENCES
----------

723-01
WSTICOVERFLOW: • GLOBAL. 24*01 746 -01
WSZ BO: • GLOBAL. 561* 01
WSZBOBIT: • GLOBAL. 590*01 564-01
WSZBONRM:.GLOBAL. 574*01 592-01
XCT: • GLOBAL. 489*01
XCTED_INSTRUCTION:TEST 491-01
XCTOP:.GLOBAL. 491-01 499-01 527 -01
XCT_WAITl:.GLOBAL. 509*01 505-01 510-01 530-01
XCT_WAIT2: • GLOBAL. 512*01 513-01
XFAMD: • GLOBAL. 957*01
XFAMS: • GLOBAL. 935*01
XFLDD: • GLOBAL. 855*01
XFLDS:.GLOBAL. 832*01
XFSTD: .GLOBAL. 906*01
XFSTS: • GLOBAL. 884*01
XJ MP: • GLOBAL. 213* 01
XJ SR: • GLOBAL. 228*01
XLDB: • GLOBAL. 456* 01
XL EF : • GLOBAL. 304*01
XLSBI: • GLOBAL. 373*01 367-01 371-01
XNLDA: • GLOBAL. 193*01
XNSBI: • GLOBAL. 368*01
XNSTA:.GLOBAL. 200*01
XWLDA: • GLOBAL. 191*01
XWSBI: • GLOBAL. 364*01
XWSTA: • GLOBAL. 198*01
ZERO:PDR_SRC 1119-01
ZERO:CPD_SRC 1140-01
ZERO:IS 262-01 527 -01 1063-01 1107-01 1131-01
ZERO:FS_SRC 863-01

•
•
•

5-67

UASM 00.10.00
Symbol Cross Reference

0009 - 03

1 .EJECT;
2A .TITLE "Widgeon Microcode: SAMPLES Code Group"
3A
4B .BEGIN;
5B .HD 1 "Proprietary information of Data General Corporation";
6B .HD 2 '10';
7B .RADIX 16;
8B .FT 2 "SAMPLES Instruction Set Microcode Rev
9B

lOB
11B

•
•
•

09-DEC-82 10:47:39 RGG"

SMlPLES

UASM 00.10.00

Instruction Set Microcode

0001 - 01

Rev 09-DEC-82 10:47:39 RGG

Proprietary information of Data General Corporation

/ *----------------------------------------------------------------------+
I I
I External definitions for Widgeon microcode samples. I
I I
I Some of the samples reference routines that, for the sake I
I of brevity, are not worth including in the samples. The I
I number of such references in the collection will be kept I
I to a minimum. I
I I
+----------------------------------------------------------------------* /

12,B
13B*
14B*
l~iB*

16B*
17B*
10B*
19B*
20B*
2J.B*
2:m
23B
24B
2!;B
26B
27B
28B
29B

• EXTERNAL

.RADIX 16;

NSTICOVERFLOW,
WSTICOVERF,LOW,
PROTECTION_FAULT,
PRIVILEGE_PROTECTION,
RESTARTABLE_INTERRUPT;

S,I\MPLES

UI\SM 00.10.00

Instruction Set Microcode

0002 - 01

Rev 09-DEC-82 10:47:39 RGG

Assembled Examples



5-68

Proprietary information of Data General Corporation

/" -------------- -- - -- - -- --- --------------- - - - --- --- - - - - --- - - - - - - - - - - - - - - +
I I
I Widgeon Microcode Samples I
I I
I This collection of sample microcode is taken directly from I
I Widgeon sources. Each selection is, as far as practical, I
I the code for an entire macro instruction. Selections are I
I presented in order of increasing complexi ty. I
I I
+-- - - - - - - -- - - - - - -- - - - - - - - - - - - - - _•. - - - - - - - - - - - - - - - - - - - -- - - -- - - - - - - - - - - - - - */

/" ------------- --------------------.- . -------------------------- -- - - -- - +
I I
I A note rega rding sty Ie: I
I I
I Having been drawn from the sources, the samples display I
I a variety of documentilticn and coding styles. These I
I variations are preserved mainly to minimize the task of I
I compiling the samples. I
I I
+----------------------------------------------------------------------* /

30B
31B
32B
33B
34B
35B*
36B*
37B*
38B*
39B*
40B*
41B*
42B*
43B*
44B
45B
46B*
47B*
48B*
49B*
50B*
51B*
52B*
53B*
54B*

•
•
•

• EJECT;
.PT 1 "SAMPLES Source File Cycle 1 18-AUG-82 15:24:34 RGG"

SAMPLES
SAMPLES
UASM

Instruction Set Microcode
Source File

00.10.00 0003 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Proprietary information of Data General Corporation

55B .EJECT;
56B .FT 1 "TABLES Source File Cycle 1 18-AUG-82 15:24:34 RGG"
57B
58B
5 9B /*----------------------------------------------------------------------+
60B* I I
61B* I Dispatch table for WCOB instruction, which appears in I
62B* I an example beloW. I
63B* I I
6 4B* +----------------------------------------------------------------------* /
65B
66B
67B %
68B % * ** **** ** *********** ******** ** ************** ****** *********** *
69B %
70B % BIT INSTRUCTION DISPATCH TABLES
71B %
72B % ******** ** *********** **** ********** ******* ** * * * ** * ** ** **** ** **
73B %
74B %
75B %
76B % WCOBTAB - Used by WeOB, COB
77B %
78B % Dispatch table is based on the number of bits set (which is
79B % added to DES).
80B % AG: CPM <- DES <- DES + CONST; Load DSP REG;
81B % ALU: CPO <- PDR <- RSHIFT(PDR); DES <- CPM
82B % I' bus <- PDR AND Ml for FZR test
83B %
84B % Location 0 of dispatch table checks for completion of instruction

--OOOO--WCOBTAB: ATTEMPT_NEXT_EFA, IF ALU=O RETURN_ELSE_GOTO WCOBl;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPO Rl1 RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CR~'N FZR WCOBI 0 EFA S@

--DFVs: addr is WCOBI (003B)
86B

--0001-- AY = AG<DES) ALU <DES) == CNST (01) +A(DES),
88B IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR) ,
89B ALU_TEST == A(Ml) AND PDR,
90B CASE_CINTO WCOBTAB;

OP TSEL ADDRESS 0 AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA vlCOBTAB I' DES DES C ADD Y AG IY GN LD Ml DES PO DA AND HRO M 01

Rl
--DFVs: addr is WCOBTAB ( 0000)

91B
--0002-- AY = AG (DES) = ALU(DES) == CNST (Ol) +A(DES),

93B IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR) ,
94B ALU_TEST == A (Ml) AND PDR,
95B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPO RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PO DA AND HRO M 01

Rl
--DFVs:

96B
--0003-­

98B
99B

addr is WCOBTAB (0000)

AY = AG(DES) = ALU(DES) == CNST(02) + A(DES),
IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR),

ALU_TEST == A(Ml) AND PDR,

SAMPLES
TABLES
UASM

Instruction Set Microcode
Source File

00.10.00 0004 - 01

Rev 1
Cycle 1

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-69

Proprietary information of Data General Corporation

100B CASE_4_INTO WCOBTAB;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

Rl
--DFVs: add!: is WCOBTAB ( 0000)

101B
--0004-- AY = AG (DES) = ALU (DES) == CNST (01) +A(DES),

103B' IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR) ,
104B ALU_TEST == A(Ml) AND PDR,
105B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
DSP1\ WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 01

Rl
--DFVs: addr is WCOBTAB ( 0000)

106B
--0005-- AY = AG (DES) = ALU (DES) == n:~,'L (02) + A(DES),

108B IY = PDR = CAS E._DATA == HEX_SHIFT_RIGHT ( Rl, PDR) ,
109B ALU_TEST == A (Ml) AND PDR,
110B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

Rl
--DFVs: addle is WCOBTAB ( 0000)

I11B
112B

--0006-- AY = AG (DES) = ALU (DES) == CNST(02) + A(DES) ,
114B IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR),
115B ALU_TEST == A(Ml) AND PDR,
116B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X

DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02
Rl

--DFVs: addl: is WCOBTAB ( 0000)
117B

--0007-- AY = AG(DES) = ALU(DES) == CNST (03) + A(DES),
119B IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR) ,
120B ALU_TEST == A(Ml) AND PDR,
121B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 03

Rl
--DFVs: addr is WCOBTAB ( 0000)

122B
--0008-- AY = AG<DES) = ALU (DES) == CNST (01) + A(DES),

124B IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR) ,
125B ALU_TEST == A(Ml) AND PDR,
126B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IE ID RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 01

Rl
--DFVs: addr is WCOBTAB (0000)

127B
--0009-- AY = AG (DES) = ALU(DES) == CNST(02) + A(DES) ,

129B IY = PDR = CASE_DATA == HEX-SHIFT_RIGHT( Rl, PDR) ,
130B ALU_TEST == A(Ml) AND PDR,

SAMPLES Instruction Set Microcode Rev 09-DEC-82 10:47:39 RGG
TABLES Source File Cycle 18-AUG-82 15:24:34 RGG
UASM 00.10.00 0005 - 01

Assembled Examples



5-70

Proprietary information of Data General Corporation

131B CASE_LINTO WCOBTAB;
OF TSEL ADDRESS D AA AB AG AOF AL ST CM CPN CPD RM RO Rl R2 IA IB 10 RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

Rl
--DFVs: addr is WCOBTAB ( 0000)

132B
--OOOA-- AY = AG (DES) = ALU (DES) == CNST(02) + A(DES),

134B IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR) ,
135B ALU_TEST == A(Ml) AND PDR,
136B CASE_4_INTO WCOBTAB;

OF TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB 10 RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

Rl
--DFVs: addr is WCOBTAB ( 0000)

137B
--OOOB-- AY = AG (DES) = ALU (DES) == CNST(03) + ACDES) ,

139B IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR),
HOB ALU_TEST == A(Ml) AND PDR,
141B CASE_4_INTO WCOBTAB;

OF TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB 10 RS IOP IY IL FR FS FOP W FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 03

Rl
--DFVs, addr is WCOBTAB ( 0000)

142B
--OOOC-- AY = AG (DES) = ALU (DES) == CNST(02) + A(DES),

144B IY = PDR = CASE_DA'fA == HEX_SHIFT_RIGHT( Rl, PDR) ,
145B ALU_TEST == A(Ml) AND PDR,
146B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS D A/'. ~ --' AG AOP AL ST CH CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP ~I FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 02

Rl
--DFVs: addr is WCOBTAB ( 0000)

147B
--OOOD-- AY = AG (DES) = ALU(DES) == CNST (03) + ACDES) ,

149B IY = PDR = CASE_DA'rA == HEX_SHIFT_RIGHT( Rl, PDR) ,
150B ALU_TEST == A(Ml) AND PDR,
151B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD R[~ RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP ~I FCW FL FRG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO 11 03

Rl
--DFVs: addr is WCOBTAB ( 0000)

152B
--OOOE-- AY = AG (DES) = ALU (DES) == CNST (03) + P.CDES) ,

154B IY = PDR = CASE_DA'fA == HEX_SHIFT_RIGHT( Rl, PDR} ,
155B ALU_TEST == A(Ml) AND PDR,
156B CASE_4_INTO WCOBTAB;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CP~I CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP VI FeW FL. I;'RG X
DSPA WCOBTAB F DES DES C ADD Y AG IY GN LD Ml DES PD DA AND HRO M 03

RI
--DFVs: acldr is WCOBTAB ( OOOO)

157B
--OOOF-- AY = AG (DES) = ALU(DES) == CNST(04) + ACDES) ,

159B IY = PDR = CASE_DATA == HEX_SHIFT_RIGHT( Rl, PDR} ,
160B ALU_TEST == A(Ml} AND PDR,

SAMPLES Instruction Set ~licrocode Rev 09-DEC-82 10:47:39 RGG
TABLES Source File Cycle I8-AUG-82 15:24:34 RGG
UASM 00.10.00 0006 - 01

Proprietary information of Data General Corporation

161B

--DFVs:

•
•
•

CASE_4_INTO WCOBTAB;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
DSPA WCOBTAB F DES DES C ADD Y AG IY GN

addr is WCOBTAB (OOOO)

Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FeW FL FRG X
LD Ml DES PD DA AND HRO M 04

Rl

SAMPLES
TABLES
UASM

Instruction Set Microcode
Source File

00.10.00 0007 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-71

Proprietary information of Data General Corporation

162B .EJECT;
163B .FT 1 "MEM Source File Cycle 1 18-AUG-82 15:24:34 RGG"
164B
165B
166 B / *-----.--------------------------------------------------- - ------------ - +
167B* I I
168B* I Memory references for the next macro instruction can be I
169B* I started by the IP from decode information. In these two I
170B* I examples, the completion of an IP ini tia ted memory I
171B* I reference is shown. The completion is generic, i.e. read I
172B* or write. The start instigated by the IP specified the I
173B* exact type of transfer to perform. I
174B* I
175B* Also shown here is the attempt of the next EFA on behalf I
176B* of the next executing macro instruction. This attempt must I
177B* be made in the last micro cycle of every macro instruction I
178B* The combination of the attempt and popping an empty micro I
179B* stack constitutes a macro instruction pop (IPOP). I
180B* I
181 B* +------.----------------------------------------------------------------* /
182B
183B
184B %********
185B % Load and Store Instructions: «L X><W N> E ><LDA STA>
186B %
187B % Perform load or stor e of AC pointed to by DES. lPOP.
188B %* *******
189B

--0010--LWLDA:
--0010--XWLDA:
--0010--LNLDA:
--0010--XNLDA:
--0010--ELDA:
--0010--LDA: CPM = AG(DES) = ALU(DES) MEM_READ, ATTEMPT_NEXT_EFA, RETURN;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CRTN TRUE DES D EFA M S@ R MM DES M

--DFVs:
196B

--OOll--LWSTA:
--OOll--XWSTA:
--OOll--LNSTA:
--OOll--XNSTA:
--OOll--ESTA:
--OOll--STA:

OP
CRTN

CPM = ME~WRITE == ALU (DES), ATTEMPT_NEXT_EFA, RETURN;
TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl
TRUE D EFA S@ W IA

R2 IA IB
DES

ID RS lOP IY IL FR FS FOP W FCW FL FRG X

--DFVs:
203B
204B
205B %********
206B % Jump Instructions: WBR, LJMP, XJMP, EJMP
2078 %
208B % Complete IPST. Go to IP_ALT WAIT.
209B %********
210B

--0012--WBR:
SAMPLES Instruction Set Microcode Rev 09-DEC-82 10:47:39 RGG
MEM Source File Cycle 18-AUG-82 15:24:34 RGG
UASM 00.10.00 0008 - 01

Proprietary information of Data General Corporation

--0012--LJMP:
--0012--XJMP:
--0012--EJMP:
--0012--JMP: COMPLETE_JUMP, GOTO WAIT;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
LEAP WAIT W

--DFVs: addr is WAIT (OFFF)
216B
217B
218B %********
219B % Jump Subroutine Instructions: <L X E >JSR
220B %
221B % Read PCN (Return PC) into PDR; Complete IPST.
222B %
223B % Move PDR to AC3, AG3 ; ;;;1.'; IPOP.
224B %
225B %********
226B

--OO13--LJSR:
--0013--XJSR:
--0013--EJSR:
--0013--JSR: COMPLETE_JUMP, PDR == RETURN_PC;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE W PCN

--DFVs:
231B

--0014-- IY = AG(AG3) = ALU(AC3) == PDR AND A(Ml) ,
233B ATTEMPT_NEXT_EFA, RETURN;

OP TSEL ADDRESS DAA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CRTN TRUE AG3 D EFA M S@ IY Ml AC3 PD AD AND PASS Y

--DFVs:

•
•
•

SAMPLES
MEM
UASM

Instruction Set Microcode
Source File

00.10.00 0009 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-72

Proprietary information of Data General Corporation

/*-----------------------------------------------------------------------+
I I
I Some Nova ALC instructions illustrate the use of the ALU I
I for simple arithmetic. The shift operation is used along I
I with the ALC opcode to provide the decode address. Carry, I
I no-load and skip options are accelerated with hardware. I
I I
+-.._- - ------ - -- - - ------- - - - - -- - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -- - - - - - */

IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
SRC DES BR AD ADD PASS Y

R2

18-AUG-82 15:24:34 RGG"

Rl

Cycle 1

1 cycle no skip
2 cycles skip, no EFA required

Source File

EXECUTION TIME:

%********
% NOVA Arithmetic and Logical Instructions
%
%
%
%
% Perform ALU operation; then Pass, Shift, or Swap; Write result to AG
% and ALU AC pointed to by DES. Enable ALC skip and IPOP.
%*******

IY = AG(DES) = ALU(DES) == B(DES) + A(SRC),
CARRY == ALC_CRY, SKIP_ON ALC_RESULT,
ATTEMPT_NEXT_E~'A, RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
TRUE DES D EFA M S@ IY XZ ALC

OP
CRTN

234B • EJECT;
235B .FT 1 "ALC
236B
237B
238B
239B*
240B*
241B*
242B*
243B*
244B*
245B*
246B
247B
248B
249B
250B
251B
252B
253B
254B
255B
256B
257B

--0015--ADD:
259B
260B

--DFVs:
261B

--0016--INC:
263B
264B

OP
CRTN

IY = AG (DES) = ALU (DES) == ZERO +1+ A (SRC) ,
CARRY == ALC_CRY, SKI P_ON ALC_RESULT,
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
TRUE DES D EFA M S@ IY XZ ALC

Rl R2 IA IB 10 RS lOP IY IL FR FS FOP W FCW FL FRG X
SRC DES ZR AD CAD PASS Y

--DFVs:
265B

--0017--SUBL:
267B
268B

OP
CRTN

IY = AG(DES) = ALU(DES) == BIT_SHIFT_LEFT( B(DES) - A(SRC) ),
CARRY == ALC_CRY, SKIP_ON ALC_RESULT,
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST 01 CPM CPD RM RO Rl R2
TRUE DES D EFA M S@ IY XZ ALC

IA IB ID RS lOP IY
SRC DES BR AD CSR BLO

IL FR FS FOP W FCW FL FRG X
Y

--DFVs:
269B

SAMPLES
ALC
UASM

Instruction Set Microcode
Source File

00.10.00 0010 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-73

Proprietary information of Data General Corporation

%===============================================================
% Load Effective Address: LEF, ELEF, XLEF, LLEF
%
% Load LAR into the AG and ALU DES registers. Abort Memory. If RMAX is
% violated, then go to the RMAX Protection routine, else IPOP.
% Load the RMAX fault code into GRO and faulting address into
% AR5 and go to the Protection routine.
%===============================================================

IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DES SC CD ANC PASS Y BITO

IA

18-AUG-82 15:24:34 RGG"Cycle 1Source File

The architecture specifies that the effective address is
checked for a ring crossing error. This check will not
be performed by hardware because the memory operation
used to generate the address is aborted. A micro test
is used to check validity.

IY = AGCDES) = ALUCDES) == SPADCBITO) NOT_AND LAR,
EXTEND_MICRO_CYCLE,
ATTEMPT_NEXT_EFA, ABORT_MEMORY,
IF NOT INWARD_REFERENCE RETURN_ELSE_GOTO RMAX_PROTECTION;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2
NRMAX RMAlLPRO DES D EFA M S@ A IY LAR GN XTND

OP
CRTN

/*----------------------------------------------------------------------+
I I
I A Load Effective Address instruction is nothing more I

than an aborted memory reference. The final contents of I
the Logical Address Register are loaded, via the CPD bus I
and ALU, into the required registers. I

I
I
I
I
I
I
I

This example also shows the use of a conditional IPOP. A I
memory abort operation is recommended following the failure I
of a conditional IPOP. I

I I
+----------------------------------------------------------------------* /

270B .EJECT;
271B .FT 1 "IMMEDIATE
272B
273B
274B
275B*
276B*
277B*
278B*
279B*
280B*
281B*
282B*
283B*
284B*
285B*
286B*
287B*
288B*
289B*
290B*
291B*
292B
293B
294B
295B
296B
297B
298B
299B
300B
301B
302B

--0018--LLEF:
--0018--XLEF:
--0018--ELEF:
--0018--LEF:

307B
308B
309B

--DFVs: addr is RMAlLPROTECTION C0019) const is BITO COOOO)
310B

--0019--RMAX_PROTECTION:
312B ABORT_MEMORY,
313B IY = ALUCGRO) == CNSTCPRT_RMX) OR CPD_ZERO,
314B CPM = AGCAR5) == ALU(DES), GOTO PROTECTION_FAULT;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
LEAP PROTECT I AR5 MAlA N

Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DES GRO CN CD OR PASS Y PRT_RMX

--DFVs:
315B
316B

addr is PROTECTION_FAULT C0002 *EXT*) const is PRT_RMX C0004)

SAMPLES Instruction Set Microcode Rev
IMMEDIATE Source File Cycle
UASM 00.10.00 0011 - 01

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-74

Proprietary information of Data General Corporation

3176 /* ..---------------------------------------------------------------------+
3l8B* I I
3l9B* I Instructions which load immediate data from the instruction I
320B* I stream use an approach similar to the LEF instructions. In I
3216* I their case, the immediate data has been loaded into the LAR I
322B* I by the IP as specified by decode information, but no memory I
323B* I reference has been initiated. I
324B* I I
325B* +- ..--------------------------------------------------------------------* /
326B
327B
328B %********
329B % Long Add Immediates: <W N >ADDI
330B % DES + IDisplacement) -) DES IDisplacement is in LAR)
331B % The Wand N types load overflow into OVR and CRY<O 16> into CARRY.
332B %********
333B

--OOlA--ADDI: IY = ALU (DES) = AG (DES) == B(DES) + LAR, ATTEMPT_NEXT_EFA, RETURN;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CRTN TRUE DES D EFA M S@ IY LAR DES BR CD ADD PASS Y

--DFVs:
335B

--OOlB--WADDI:
--OOlB--WNADI:
--OOlB--NADDI:

339B
340B

OP
CRTN

--DFVs:
34lB
342B

•
•
•

% For the 32-bit Immediate
% For the 16-bit Immediate
IY = ALUIDES) = AGIDES) == AIDES) + LAR,

CARRY == ALU_CRY, UPDATE_OVR,
ATTEMPT_NEXT_EFA, RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl
TRUE DES D EFA M S@ IY LAR XZ LOVe

R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
DES DES CA ADD PASS Y

SAMPLES Instruction Set Microcode Rev
IMMEDIATE Source File Cycle
UASM 00.10.00 0012 - 01

Proprietary information of Data General Corporation

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

3 43B /*----------------------------------------------------------------------+
344B* I
345B* A short immediate field is derived from the source I
346B* accumulator bit field of the macro instruction. Actual I
347B* values are 0 through 3, but implied values are 1 through 4. I
348B* The following instructions read an operand from a memory I
349B* location, subtract the implied immediate data from it, and I
350B* store the result back in the same memory location. I
35lB* I
3052B* +----------------------------------------------------------------------* /
353B
354B
355B %********
356B % Short Subtract Immediate from Memory: <L X><W N >SBI
357B %
358B % MEM - I [ACSJ + 1) -> ME~;

359B %
360B % Read Memory operand into ALU IGRO). Start same address to write back.
361B % Go to XLSBI to complete the operation and perform the write.
362B %********
363B

--OOlC--XWSBI:
--OOlC--LWSBI: CPM ALUIGRO) == MEM-READ,

366B START AY == PASS(LAST_LA) FOR WRITE_DOUBLE,
367B GOTO XLSBI;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
LEAP XLSBI L PSB we R MM GRO M

--DFVs: addr is XLSBI (OOlE)
--OOlD--XNSBI:
--OOlD--LNSBI: CPM = ALUIGRO) == MEM-READ,

370B START AY == PASS (LAST_LA) FOR WRITE_WORD,
371B GOTO XLSBI;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA 16 ID RS lOP IY IL FR FS FOP W FCW FL FRG X
LEAP XLSBI L PSB WW R MM GRO M

--DFVs: addr is XLSBI 1001E)
372B

--OOlE--XLSBI: IY = MEM-WRITE == AIGRO) -1- SRC_POINTER,
374B CARRY == ALU_CRY, UPDATE_OVR,
375B ATTEMPT_NEXT_EFA, RETURN;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FL FRG X
CRTN TRUE D EFA S@ W IY XZ LOVC GRO AS DA SMR PASS

--DFVs:

•
•
•

SAMPLES Instruction Set Microcode Rev
IMMEDIATE Source File Cycle
UASM 00.10.00 0013 - 01

Assembled Examples

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG



5-75

Proprietary information of Data General Corporation

3768 • EJ ECT /
3778 .FT 1 "8YTE Source File Cycle 1 18-AUG-82 15:24:34 RGG"
3788 /
3798
3 8U 8 / *----------------------------------------------------------------------+
3818* I I
3828* I These selections f rom the byte microcode show the use of I
3838* I a conditional sUbroutine call, a memory start using the I
3848* I address generator, and a memory abort. A copy of the PC I
385B* I of execution + 1 is moved to the address generator by first I
3868* I loading PCX into PDR, and then subtracting -1 from it and I
3878* I loading the result in the AG register file via the CPM bus. I
3888* I I
3898* +----------------------------------------------------------------------* /
3908
3918
392B %** '* *** ******** ** ****** **** **** ******* ** ***** * * * * * * * * ***** * * * * * *****
3938 %
394B % Byte EFA Instructions
3958 % --------------------------
3968 %
3978 % EFA calculations for a Byte address cannot be completely performed
3988 % by the hardware. The PC relative index case cannot be performed
3998 % since the Displacement is a byte address and the PC is a word address.
400B % The AG converts the byte displacement and performs the other indexing.
401B %
402B %*** ** ****** ** **** ***** * ******* * * * * ***** '* ** * * ** * * * * * * ***** * * * * * *** * *
4038
4048
4058 %******
4068 % Subroutines to perform
407B % READ/WRITE PC Rela ti ve Byte Addr esses
408B % -------------------------------------
4098 % PC Relative Addressing must be handled separately
4108 % since the IP cannot align a 8yte displacement.
411B %
4128 % Abort the previous start and move the PC of the instruction
413B % plus 1 (pC of the DISP) to the AG (ARO).
4148 % Form the PC relative address by adding the Displacement (LAST_LA)
415B % to the PC (ARO) and start for the Byte Read/Write. Word
416B % addressing must be forced since the addresses have already
4178 % been aligned to word addresses. Return to the caller.
4188 %******
4198

--001F--READ_PC_8YTE:
421B IY = AG(ARO) == PDR - A(Ml), A80RT_MEMORY/

OP TSEL ADDRESS D AA A8 AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS IOP IY IL FR FS FOP \'1 FCW FL FRG X
CJMP FALSE ARO M A IY Ml PD AD CSR PASS

--DFVs:
4228

--0020-­
424B

OP
CRTN

START AY == LAST_LA + A(ARO) WITH_WORD_ADDRESSING FOR READ_BYTE,
RETURN/

TSEL ADDRESS D AA A8 AG AOP AL ST CM CPM CPD RM RO Rl R2 IA
TRUE ARO L ADD R8 AT WORD

18 ID RS IOP IY IL FR FS FOP \'1 FCW FL FRG X

--DFVs:
4258

SAMPLES
8YTE
UASM

Instruction Set Microcode
Source File

00.10.00 0014 - 01

Rev
Cycle

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-76

Proprietary information of Data General Corporation

426B
--0021--WRITE_PC_BYTE:

428B IY = AG(ARO) == PDR - A(Ml), ABORT_MEMORY;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
CJMP FALSE ARO M A IY

Rl R2 IA IB ID RS IOP IY IL FR FS FOP W FCW FI, FRG X
Ml PD AD CSR PASS

--DFVs:
429B

--0022-­
431B

OP
CRTN

START AY == LAST_LA + A(ARO) WITH_WORD_ADDRESSING FOR WRITE_BYTE,
RETURN;

TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA
TRUE ARO L ADD WB AT WORD

IB ID RS IOP IY IL FR FS FOP W FCW PI, FRG X

--DFVs:
432B
433B
434B %********
435B % Load Byte: LDB, WLDB
436B %
437B % Start the byte address in the SRC accumulator for a Read byte.
438B % Finish the operation at LDA.
439B %********
440B

--0023--WLDB:
--0023--LDB: START AY == PASS(B(SRC)) FOR READ_BYTE, GOTO LDA;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPH CPD RM RO Rl R2 IA IB ID RS IOP IY
LEAP LDA SRC B PSB RB

IL FR FS FOP W FCW FL FRG X

--DFVs: addr is LDA (0010)
443B
444B
445B %********
446B % Indexed Load/Store Byte: LLDB, XLDB, ELDB
447B %
448B % Check for PC relative Addressing before attempting complete of operation.
449B % Get PC of instruction into PDR in case of PC relative addressing.
450B % Subroutine to Start the correct address if index was PC relative.
451B % Complete the operation and IPOP:
452B % LDB: Store the read byte into the AG and the ALU DES.
453B %********
454B

--0024--LLDB:
--0024--XLDB:
--0024--ELDB: PDR == PC_Of_EXECUTION, IF PC_REL_INDEX CALL READ_PC_BYTE;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJSR IXPC READ_PC_ PCX

--DFVs:
458B

--0025--

--DFVs:
460B
461B

addr is READ_PC_BYTE (OOlF)

CPM = AG(DES) = ALU(DES) MEM_READ, ATTEMPT_NEXT_EFA, RETURN;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA
CRTN TRUE DES D EFA M S@ R MM

IB ID RS IOP 1Y
DES

1L FR FS FOP W FCW FL FRG X
M

SAMPLES
BYTE
UASM

Instruction Set Microcode
Source File

00.10.00 0015 - 01

Rev
Cycle

09-DEC-82 10: 47: 39 RGG
18-AUG-82 15:24:34 RGG

Assembled Examples



5-77

Proprietary information of Data General Corporation

/*---_._-----------------------------------------------------------------+
I I
I The code for the XCT instruction address SPAD with a I
I constant, uses the flags to control sequencing and does I
I a word zero extend with the hex shifter. I
I I
+----_._----------------------------------------------------------------* /

Enter here for ordinary XCT. If restarting or resuming,
XCTed opcode must still be in DES. Bit 0 of double word saved in
SPAD is cleared to indicate to interrupt handlers that saving
XCT opcode on wide stack is not required. Start execute.

/*---_._---------------------------------------------------------+
I I
I XCT Execute an AC's contents I
I I
I DES contains the opcode to be executed I
I I
+----_._--------------------------------------------------------* /

&; % Wait for XCTED_INSTRUCTION test to setup.
ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO
&

IL FR FS FOP W FCW FL FRG XID RS IOP IYIBIAR2

18-AUG-82 15:24:34 RGG"

Rl

Cycle 1Source File
462B .EJECT;
463B • FT 1 "XCT
464B
465B
466B
467B*
468B*
469B*
470B*
471B*
472B*
473B
474B
475B
476B*
477B*
478B*
479B*
480B*
481B*
482B
483B
484B
485B
486B
487B

--0026--EXECU~~E:
--0026--XCT: GOTO

OP TSEL
LEAP

--DFVs:
490B

--0027--

addI' is & (0027)

ID == SPAD( XCTOP), IF NOT XCTED_INSTRUCTION GOTO NORMAL_XCT;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2
CJMP NXCTF NORMAL_X

IA IB ID RS IOP IY
SC

IL FR FS FOP W FCW FL FRG X
XC TOP

IL FR FS FOP W FCW FL FRG XID RS IOP IYIBIAR2

If XCT was executed by a PBX, then the XCT should set BitO of
XCTOP since it was virtually executed by the PBX.

addr is NORMAL_XCT (0029) const is XCTOP (00C3)

IF ID_SIGN=l GOTO EXECUTE_PBX;
OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl
CJMP DSGN EXECUTE_

--DFVs: addr is EXECUTE_PBX (002D)
497B

--002 9--NORMAI,_XCT:
499B IY = SPAD( XCTOP ) == WORD_ZERO_EXTEND (A(DES)), START_EXECUTE;

OP TSEL ADDRESS D AA AB AG AOP AL ST CM CPM CPD RM RO Rl R2 IA IB ID RS lOP IY IL FR FS FOP W FCW FL FRG X
CJMP FALSE AGO AGO B SUB WW AT CMO WC DES AD WZX NY XCTOP

--DFVs:
492B
493B
494B
495B

--0028--

--DFVs:
500B
501B
502B

--002A-­
SAMPLES
XCT
UASM

const is XCTOP (00C3)

Send instruction to the IP via the Cache.

CPM = EXECUTE_DATA == ALU(DES) ,
Instruction Set Microcode Rev
Source File Cycle

00.10,,00 0016 - 01

09-DEC-82 10:47:39 RGG
18-AUG-82 15:24:34 RGG

End of Chapter

Assembled Examples





31

Appendix A
Page Faults

Page faults occur during Logical Address Translation (LAT) . There are two possible
causes for page faults:

• A referenced page is not in physical memory. This is indicated by the page table entry
RESIDENT bit (bit 1) being O.

• A referenced page requires a two-level page table when only a one-level page table has
been defined. This is indicated when a Segment Base Register (SBR) LENGTH bit (bit
1) is 0, but the logical address bits 4-12 are not zero.

Page Table Entry:

a 1 2 4 5 12 13 31

~ ACC I RESERVED PHYSICAL ADDRESS

Segment Base Register:

a 1 234

~,- P_H_Y_S_I_C_A_L__A_D_D_R_E_S_S ---,

The LAT trap microcode must determine that the referenced address is nonresident, and
then transfer control to the page-fault microcode.

The purpose of the page fault is to pass control to the operating system. The operating
system may then bring the nonresident page into physical memory. Before the operating
system receives control, microcode pushes a context block to preserve the current state of the
hardware.



A-2

There are four types of context blocks, only two of which are now implemented. The
type of block depends on the instruction executing when the page fault occurred. The
following list shows the page-fault types.

1) Simple

2) Resumable

3) Floating Point (not implemented)

4) Decimal (not implemented)

Microcode pushes a simple context block when the macroinstruction will be restarted after
its referenced page is brought into physical memory. A macroinstruction is restartable if the
current microcycle is the first cycle of an instruction (i.e., one cycle after an IPOP) or inside
an EFA. Restart may also be forced by setting SPAD location PF-RESTART to a nonzero
value. An example of an instruction that can only restart is LDA. LDA references memory
only during its first cycle.

Microcode pushes a resumable context block when a macroinstruction will resume with
the microinstruction that was executing when the LAT trap occurred. Because most of the
machine-visible state must be saved, a resumable context block is longer than a simple
context block. Most instructions that reference memory (except for EFA references) are
resumable.

Figure A-I shows the context blocks.



WORD

O.
2.
4.
6.
8.

10.
12.
14.
16.
18.
20.
22.
24.

CONTENTS

PSR} XCTOP
ACO
AC1
AC2
AC3
Carry} PCX
PC
LAR
<0-15>: us tack
IP_STATE word
ATU_STATE word
ALU_STATE word
MSEQ_STATE word

Size} <16-31>:Context Block TYPE
(ION) XCTFLG} LPCX)

(See "ATU STATE" in Chapter 2)
(SPAR) ACD} ACS)
(TOS) FLGs} DSR)

Simple
Context
Block

A-3

26.
28
30.
32.
34.
36.
38.
40.
42.
44.
46
48.
':;0.
':;2.
54.
56.
58.
60.
62.
64.
66.
68.
70.
74.

PDR
TREG
GRO
GR1
GR2
GR3
GR4
GR5
GR6
GR7
AGO
AG1
AG2
AG3
ARO
AR1
AR2
AR3
AR4
AR5
AR6
AR7
FGO (64 bits)
Microstack Contents

ALU State

Resumable
Context
Block

AG State

(variable-length; see word 16)

Figure A-1. Context Blocks



A-4

After the context block is pushed, a fault code is returned in ACl:

Code Meaning

o Multiple ERCC
fault

Page table
depth fault

2 Page table page
fault

4 Normal object
reference

Note: The multiple ERCC fault is currently a nonrecoverable condition.

End of Appendix



Appendix B
CPO Bus Legal Path Analysis

The following figure illustrates legal combinations of sources and destinations for the
CPD Bus.

Typical Destinations

CPO Source Into ALU* POR OSP uSTK FLAGS** IOC
COW IPS

ATS/REF ATS/ST
ATS/MOO

TREG
USS
ZER/N Type 1 Yes Yes Yes Yes
LAR
ATD

CIR
CDR Type 2 Yes Yes Yes Yes
ATS/STS*u

AGA Type 3 Yes Yes Yes Yes

IOC Type 4 Yes Yes Yes Yes
IPS

ATS/REF*u
ATS/MOD*** Yes Yes No No
PCN Type 5
PCX Yes Yes No No
PC

* See the ALU path table (Appendix D) for these setups.

** FLAGS can be placed in the uSTK category, if they are guaranteed not to be tested next
cycle.

*** The ATS source contains two different types of data: ATS/STS is the ATU Status bits and
ATS/(REF MOD) is the Reference and Modify bits.

End of Appendix





Appendix C
CPM Bus Legal Path Analysis

The following figure illustrates legal combinations of sources and destinations for the
CPM Bus.

Typical Destinations

CPM SPAD ALU FPSR TREG
Source AG

FPU
CACHE

ALU IY

ALU IA Yes Yes Yes Yes

FPU Yes Yes Yes Yes

FPSR Yes Yes Yes Yes

FP STATE Yes Yes Yes Yes

ALL_ONES Yes Yes Yes Yes

AG Yes Yes Yes Yes

MEMORY Yes Yes Yes Yes

* See ALU path analysis (Appendix OJ.

End of Appendix





Appendix D
ALU Source and Destination Paths

The following table illustrates legal sources and destinations for the integer ALU. Sources
are classified as follows:

Type Sources

All 10 Bus sources (except SPAD), ALU Register File,
TREG, LAR,ZER/N, USS, ATD

2 CIR, CDR, ATS (Except REF and MOD bits)
3 AGA
4 IOC, SPAD, IPS
5 Any PC type, ATS (REF and MOD bits) *

Destinations

Sources

Arithmetics or
Hex Shifts
Type 1 (LAR)
Type 2 (CIR)
Type 3 (AG)
Type 4 (SPAD)

AG RF
FP RF
FPSR
uSTK
IPS

Yes
No
No
No

SPAD
ATS1

Yes
No
No
No

Cache

Yes
No
No
No

PDR
TREG
OSP
COW
ATS2

Yes
No
No
No

ALU
SPAR

Yes
Yes
Yes
Yes

Logical
Type 1 (LAR)
Type 2 (CIR)
Type 3 (AG)
Type 4 (SPAD)

EDIT Translate
AREG only

Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes
No Yes Yes Yes Yes
No No Yes Yes Yes

Yes Yes Yes Yes Yes

* Type.s 5 and 6 will not make any destination except PDR class CPD destinations without an
EXTEND.

Note: All types will make any desired destination, using any desired operation, if they are
extendled. Note that SPAD cannot be read and written in the same cycle under any
circumstances.

End of Appendix





Appendix E
Page Zero Locations

By convention, an MV machine has a set of reserved storage locations in page 0 of
segment 0 that are used by fault routines. This appendix lists the definitions for those
locations.

. RADIX 16;
/* --------------------------------------------------------------------------+
I I

I PAGE ZERO LOCATION DEFINITIONS I

I I

I The size of the pointer and whether it is indirectable is indicated I

I by a 16) 32) 161) or 321 at the end of the comment. I
I I

+-------------------------------------------------------------------------- */

.DEFINE INTR - LEV 00;

.DEFINE INTR - HDLR 01 ;

.DEFINE INTR - RTN 02;

.DEFINE SYC HDLR 02;

.DEFINE VSP 04;

.DEFINE VSL 06;

.DEFINE VSF 07;

.DEFINE BKP HDLR 08;

.DEFINE WXOP TBL OA;

.DEFINE WSF OC;

.DEFINE UIT HDLR OD;

.DEFINE WFP 10;

.DEFINE WSP 12;

.DEFINE WSL 14;

.DEFINE WSB 16;

.DEFINE PGF HDLR 18 ;

.DEFINE CNTX BLK 1 A;

.DEFINE GATE TBL 1C;

.DEFINE PRT - HDLR 1 E;

.DEFINE FIX HDLR 1 F;

.DEFINE NSP 20;

.DEFINE NFP 21 ;

.DEFINE NSL 22;

.DEFINE NSF 23;

.DEFINE NXOP TBL 24;

.DEFINE FLT - HDLR 25;

.DEFINE COM - HDLR 26;

.DEFINE DERR HDLR 27;

% Current Level of Interrupt processing (A count)
% Interrupt Handler address - 161
% Interrupt Return address - 32
% System Call Handler address - 161 (if ATU off)

% Vector Stack Pointer - 16
% Vector Stack Limit - 16
% Vector Stack Fault Handler address - 161

% Breakpoint Handler address - 321
% Wide XOP Table base address - 32

% Wide Stack Fault Handler address - 161
% Unimplemented Instruction Handler address - 16
% Wide Stack Frame Pointer - 32
% Wide Stack Pointer - 32
% Wide Stack Limit - 32
% Wide Stack Base - 32

% Page Fault Handler address - 321
% Context Block Area Pointer - 321

% Gate Array base address - 32

% Protection Fault Handler address - 161
% Fix Point Fault Handler address - 161

% Narrow Stack Pointer - 16
% Narrow Frame Pointer - 16
% Narrow Stack Limit 16
% Narrow Stack Fault Handler address - 161

% Narrow XOP Table base address - 16

% Floating Point Fault Handler address - 161
% Commercial Fault Handler address - 161
% Diagnostic Error Fault handler address - 161

/* ----------------------------------------------------------------------- */

End of Appendix





Appendix F
Fault Codes

This appendix lists the MVII 0000 fault codes. These codes should be placed in
macroaccumulator 1 after a fault occurs.

% Any overflow except for WMSP}wide saves}or CALL
% Underflow or overflow caused by WMSP}wide saves
% Too many arguments on a CALL
% Underflow
% Overflow while pushing return block for
% fault or interrupt

% Read
% Write
% Execute
% Validity of SBR or PTE
% Inward Memory. Reference (Ring Maximization)
% Defer level exceeded
% Illegal Gate
% Outward Call
% Inward Return
% Privileged Instruction
% 10 Protection
% Invalid Context Block type
% Invalid microinterrupt return block

% Page Table Depth exceeded
% Nonresident Page Table
% Nonresident Reference (object) page

01 ;
02;
04;

Faults:
00;
01 ;
02;
03;
04;

%********

. RADIX 16;
%********
% DEFINITION OF FAULT CODES
% Protection Faults:
.DEFINE PRT_RD 00;
.DEFINE PRT_WR 01;
.DEFINE PRT_EX 02;
.DEFINE PRT_VLD 03;
.DEFINE PRT_RMX 04;
.DEFINE PRT_DFR 05;
.DEFINE PRT_GATE 06;
.DEFINE PRT_CALL 07;
.DEFINE PRT_RTN 08;
.DEFINE PRT_PRV 09;
.DEFINE PRT_IO OA;
.DEFINE PRT_CB DB;
.DEFINE PRT_IMI DC;
% Page Faults:
.DEFINE PAG_PTD
.DEFINE PAG_PTE
.DEFINE PAG_REF
% Wide Stack
.DEFINE STK_OVF
.DEFINE STK_ABT
.DEFINE STK_ARG
.DEFINE STK_UNF
.DEFINE STK FOV

the SCP:
00;
01 ;
02;
03;
04;
05;

%********
% Messages to
.DEFINE SCP_HALT
.DEFINE SCP_IPRT
.DEFINE SCP_IPGF
.DEFINE SCP_LCS
.DEFINE SCP_IORST
.DEFINE SCP INTR
%********

% The machine has entered the HALT loop
% Infinite Protection Fault loop detected
% Infinite Page Fault loop detected
% Load Control Store request
% An IORST is being performed
% A trap to the SCP has occured

End of Appendix





.RADIX 16i

%*****""~**
% Definition of TRAP
.DEFINE TRAP_PROT
.DEFINE TRAP_LAT
.DEFINE TRAP_CBXR
.DEFINE TRAP_CBXW
.DEFINE TRAP_FXERR
.DEFINE TRAP_FLERR
.DEFINE TRAP_UNUSED
.DEFINE TRAP SCP
%*****~:**

Appendix G
Exceptions

addresses:
04i % Protection
OCi % Long Address Translation
14i % Read Cache Block Crossing
1Ci % Write Cache Block Crossing
24i % Fix Point Error (Overflow)
2Ci % Floating Point Error
34; % Unused
3C; % System Console Processer

%*****~:**
% Definition of IP Alternate Addresses:
.DEFINE IP - WAIT OFFFi % Wait for IP
.DEFINE IP - USKP OFFEi % Microcode-forced Skip
.DEFINE IP - HLT OFFCi % Halt
.DEFINE IP - IFLUSH OFFAi % IP Pipeline Flush
.DEFINE IP - INTRT OFF8; % Interrupt
.DEFINE IP_@JMP OFF 4 i % Indirect Jump Reference
.DEFINE IP_@MRF OFF2i % Indirect Memory Reference
.DEFINE IP ICAT OFFOi % ICache Translation

End of Appendix





Appendix H
Scratch Pad Addresses

The: scratch pad in the integer ALU contains reserved locations that are used as save
areas or to hold constants used by microroutines. This appendix lists the SPAD reserved
locations.

. FT 3 SCRATCH PAD;

%*****'k****************************************************************
% SCRATCH PAD ADDRESSES

%*****'k****************************************************************
.RADIX 10;
.WORD 32;
.WIDTH 4;
.LENGTH 256;
.DESTINATION SCRATCH_PAD;
.SFIELD spadcontenth (0-15);
.SFIELD spadcontentl(16-31);
.DFIELD (spadcontenth)) (spadcontentl);
.LIST SAME) 16;
.RADIX 16;
% Used in BTZ)BTO)SNB)SZBO)SZB
% LOCed to hardware address mux for WSKBO) WSKBZ
BITO: 8000 0000;
BIT1: 4000 0000;
BIT2: 2000 0000;
BIT3: 1000 0000;
BIT4: 0800 0000;
BIT5: 0400 0000;
BIT6: 0200 0000;
BIT7: 0100 0000;
BIT8: 0080 0000;
BIT9: 0040 0000;
BIT10: 0020 0000;
BIT11: 0010 0000;
BIT12: 0008 0000;
BIT13: 0004 0000;
BIT14: 0002 0000;
BIT15: 0001 0000;
BIT16: 0000 8000;
BIT17: 0000 4000;'
BIT18: 0000 2000;
BIT19: 0000 1000;
BIT20: 0000 0800;
BIT21: 0000 0400;
BIT22: 0000 0200;
BIT23: 0000 0100;
BIT24: 0000 0080;
BIT25: 0000 0040;



H-2

BIT26: 0000 0020;
BIT27: 0000 0010;
BIT28: 0000 0008;
BIT29: 0000 0004;
BIT30: 0000 0002;
BIT31 : 0000 0001 ;
% Table of mask constants for WASH
WASHMO: 08000 0000;
WASHM1 : OCOOO 0000;
BRNGMSK: % Byte ring mask
WASHM2: OEOOO 0000;
WASHM3: OFOOO 0000;
WASHM4: OF800 0000;
WASHM5: OFCOO 0000;
WASHM6: OFEOO 0000;
WASHM7: OFFOO 0000;
WASHM8: OFF80 0000;
WASHM9: OFFCO 0000;
WASHM10: OFFEO 0000;
WASHM11 : OFFFO 0000;
WASHM12: OFFF8 0000;
WASHM13: OFFFC 0000;
WASHM14: OFFFE 0000;
WDMSK:
WASHM15: OFFFF 0000;
WASHM16: OFFFF 08000;
WASHM17: OFFFF OCOOO;
WASHM18: OFFFF OEOOO;
WASHM19: OFFFF OFOOO;
WASHM20: OFFFF OF800;
WASHM21 : OFFFF OFCOO;
WASHM22: OFFFF OFEOO;
WASHM23: OFFFF OFFOO;
WASHM24: OFFFF OFF80;
WASHM25: OFFFF OFFCO;
WASHM26: OFFFF OFFEO;
WASHM27: OFFFF OFFFO;
WASHM28: OFFFF OFFF8;
WASHM29: OFFFF OFFFC;
WASHM30: OFFFF OFFFE;
WASHM31 : OFFFF OFFFF;



H-3

SBRexamine

USEQ STATE
ALU STATE
ATU STATE

Needed for SCP% Shadow copies of SBRs.
% primitive.

% Save area for AG register file.

This group of elements is location-locked so that it will not be loaded
and verified by Scp/os. If the size or location of this group must
be changed) the MAKE_WIDGEON macro must be changed. *1

Save locations for console primitives.
Must be aligned for SPAD table offset computations.
0000 0000; % Save area for ALU register file.
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;

OFFFF OFFFF;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0001;
0000 0002;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000;
0000 0000; % PDR
0000 0000; % TREG
0000 0000; % Last LA
0000 0000; % Flags and dispatch register
0000 0000; % SPAR and DES/sRC pointers
0000 0000; % MemStart) RefMod) Faultcode
0000 0000; % Reserved for IP State word
0000 0000; % Reserved for PC of executing instruction

Do not change these SCP save locations without fixing
the MAKE_WIDGEON macro.

1*

%

%

ACOSV:
AC1SV:
AC2SV:
AC3SV:
FPSV:
SLSV:
SBSV:
M1SV:
GROSV:
GR1SV:
GR2SV:
GR3SV:
GR4SV:
GR5SV:
GR6SV:
GR7SV:
AGOSV:
AG1SV:
AG2SV:
AG3SV:
SPSV:
ONESV:
TWOSV:
LATSV:
AROSV:
AR1SV:
AR2SV:
AR3SV:
AR4SV:
AR5SV:
AR6SV:
AR7SV:
SBROCP:
SBR1CP:
SBR2CP:
SBR3CP:
SBR4CP:
SBR5CP:
SBR6CP:
SBR7CP:
PDRSV:
TRGSV:
LLASV:
FLDSV:
SDSSV:
ATUSV:
IPSSV:
PCXSV:
1*



H~

%******************
% Constants
%******************
% Table of constants for I/O
SNIO: 0001 0000;
SDIA: 0001 0100;
SDOA: 0001 0200;
SDIB: 0001 0300;
SDOB: 0001 0400;
SDIC: 0001 0500;
SDOC: 0001 0600;
SSKP: 0001 0700;
IOCMD: 0003 0000; % I/O Transfer Command Constant used by DIX and DOX
IOCMD1: 0001 8000; % I/O Transfer Command Constant for CIO (Type 1)
DESMSK: 0000 3000; % Used by PIO to mask the DES field
PORT_MSK:OOOO 7000; % Used by PIO to mask the Port field
HI9: 0000 9000; % Mask used by the interrupt code for Type 1
IO_OP: 0000 6000; % Used by PIO to construct a NOVA I/O opcode
XVCT_OP:OFFFF OC709; % XVCT's opcode used by interrupt code
INTA_OP: 0001 733F; % Interrupt Acknowledge Opcode used by XVCT
DMSKO_OP:0001 743F; % Device Mask Out Opcode used by XVCT
PMSKO_OP:0001 OFFC1; % Port Mask Out Opcode for use by XVCT
IOCNT: 0000 1000; % r/o Time Out Count
RNGMSK: 07000 0000; % Ring bit Mask
M12: OFFFF OFFF4; % CONSTANT -12
CHAR: 2020 2020; % A Double Word of Spaces
EXPM: 7FOO 0000; % Mask for floating-point exponent
EXP4: 4400 0000; % Floating-point exponent of value 4
EXP8: 4800 0000; % Floating point exponent of value 8
M280: 0000 0280; % Mask for ATU State word in WDPOP
M680: 0000 0680; % Mask for ATU State word in WDPOP
ZNBIT: 0300 0000; % Mask for Z and N FPSR bits
UOBIT: 6000 0000; % Mask for UNF and OVF FPSR bits
UDBIT: 3000 0000; % Mask for UNF and DVZ FPSR bits
ODBIT: 5000 0000; % Mask for OVF and DVZ FPSR bits
% The following constants are used to convert floating-point
% integers in the range 0 to 10**16-1 into a fraction for
% conversion to decimal format. If the correct factor is used,
% subsequent multiplications by 10 will yield at the most
% one leading zero.
STITM1: 4019 9999; % 1/10

9999 9999;
STITM2: 3F28 OF5C2; % 1/10**2

8F5C 28F6;
STITM3: 3E41 8937; % 1/10**3

4BC6 OA7FO;
STITM4: 3D68 ODB8B; % 1/10**4

OAC71 OCB3;
STITM6: 3C10 OC6F7; % 1/10**6

OAOB5 OED8D;
STITM7: 3B1A OD7F2; % 1/10**7

9ABC OAF48;
STITM8: 3A2A OF31D; % 1/10**8

OC461 1874;
STITM9: 3944 OB82F; % 1/10**9

OA09B 5A53;
STITM10: 386D OF37F; % 1/10**10

675E OF6EB;
STITM12: 3711 9799; % 1/10**12

812D.OEA11;
STITM13: 361C 25C2; % 1/10**13

6849 7682;
STITM14: 352D 0937; % 1/10**14

OD42 5736;
STITM15: 3448 OEBE; % 1/10**15

7B9D 5857;



"-5

and DSP

% Memory size placed here by the SCP

% Microsequencer State word: Fault uPC, FLAGs,
% ALU state word: SPAR, ACDR, ACSR
% IP state word: Length and other state.
% ATU state word: Start type and other state.
% AG Reg File variables:

% LOC'ed so constants can be added without moving the Scratch locations
.LOC OCO;
%*************************************************
% Scratch Locations and Register Extensions
%*************************************************
DEFAULT_PORT:

0000 0000;
PORT_NUM:OOOO 0000;

% Port number to be used for NOVA I/O Opcodes
% Port number to be used by the DIX/DOX routines
% It is always reset to DEFAULT_PORT upon completion.

FPPC: 0000 0000; % PC of last floating point instruction with an error.
XCTOP: 0000 0000; % Op code of the last XCT'ed instruction
PROTST: 0000 0000; % Used to detect protection faults within prot. faults
AC_UPDATE: 0000 0000; % Used by prot. faults
TREGSAVE: 0000 0000; % Temporary register used during the LAT routine
%====:=============================================
% Reserved for Page Fault Context Save
PF_RESTART: a 0000; % Flag to force instruction restart if Page Faulted.
PF_FLAG: 0000 0000; % Page Fault Lock set to detect Recursive faults.
PF_CODE: 0000 0000; % Reason for Page Fault
PF_TYPE: 0000 0000; % Type of context block to be pushed
PF_TREG: 0000 0000; % Single Register: TREG) PDR, and LAR
PF_PDR: 0000 0000;
PF_Lim: aaaa aaa0;
PF_MSEQ: 0000 0000;
PF_ALU: 0000 0000;
PF_IP: 0000 0000;
PF_ATU: 0000 0000;
PF_AGO: 0000 0000;
PF _AG1: 0000 0000;
PF _AG2: 0000 0000;
PF_AG3: 0000 0000;
PF _AHa: 0000 0000;
PF_AR1: 0000 0000;
PF_AR2: 0000 0000;
PF_AR3: 0000 0000;
PF_AR4: 0000 0000;
PF _AR5: 0000 0000;
PF_AR6: 0000 0000; % Mapped by SRC = E
PF_AR7: 0000 0000; % Mapped by DES = F
PF_GRO: 0000 0000; % Holds GRO to allow calculations on the ALU
%=================================================
.LOC OFC;
% Locked to last four locations for SCP
MODEL: 0000 MODEL_NUM;
MNREV: 0000 MINOR_REV;
MJREV: 0000 MAJOR_REV;
MEMSZ: 0000 OOOF;

End of Appendix



Note: Page numbers in bold type (e.g., 1-5)
indicate definitions of terms or other key
information.

AA Bus 2-3, 2-6
ACDR register 2-12
ACSR register 2-12
Address Generator 1-3, 2-31

ALU 2-36
buses 2-32
micro-orders 3-24

Address Generator bus 2-33
Address Generator Bus, sources 2-35
Address Generator register file 2-33

addressing 2-34
Address Translation Cache 2-37
Address Translation Unit 1-4, 2-36

diagnostic register 2-41
dispatch 2-42
state 2-40
tests 3-9

AG, see Address Generator
AGB, see Address Generator Bus
ALU, IALU 2-15
ATU

see Address Translation Unit
AY bus 2-33

Bit shifter 2-18
Bus control micro-orders 3-34

CARRY 2-16
Carry-in base 2-16
Carry-in logic 2-16
CIB, see Carry-in base
Clocks and Timing 2-1
Commercial edit PROMs 2-17
Commercial test PROMs 2-17
Commercial tests 2-17
CON register 2-12
Context block A-2
Control store 1-1
CPA Bus 1-4

Index

CPD Bus 1-4, 2-3, 2-43, B-1
CPD Bus register 2-19
CPM Bus 1-4, C-l
Crossbar network 2-5

DISP Bus 2-32
Dispatch multiplexer 2-5
Dispatch register 2-5
Divide guard digit register 2-29
Divide hardware 2-28
Divide Partial Remainder register 2-29
DPR, see Divide Partial Remainder register

Exception definitions G-l
Excess-64 conversion 3-99
Exponent ALU 2-31
Exponent logic 2-30
Exponent working register 2-30

FA Bus 2-21
Fault codes F-l
FB Bus 2-21
Flags 2-6
Floating-point ALU micro-orders 3-86
Floating-point divide hardware 2-28
Floating-point multiply hardware 2-26
Floating-point register file 2-22
Floating-point STATE register 2-24
Floating-Point Status Register 2-22
Floating-point tests 3-18
Floating-Point Unit 1-4, 2-19

buses 2-21
multiply hardware 2-26

FPSR, see Floating-Point Status Register
FPU

see Floating-Point Unit
FR Bus 2-21
FS Bus 2-21



Index-2

Hex shifter
FPU 2-24
IALU 2-14

I/O protocols 2-46
IALU

see Integer ALU
ID Bus 2-11
Indirection protection 2-39
Instruction Processor 1-3, 2-43

state 2-44
Integer ALU 1-4, 2-8, D-l

tests 3-12
width of operations 2-8

Integer ALU micro-orders 3-71
Integer register file 2-10
Interrupts 2-45
IP

see Instruction Processor

LA Bus 1-4
LA bus 2-32
LAT) see Logical Address Translation
Leading Zero Detector 2-25
Logical Address Translation 2-38, A-I
LZD, see Leading Zero Detector

M Bus 2-21
Macroassembler

ALU operation constructs 5-6
CPD Bus constructs 5-3
CPM Bus constructs 5-2
FA and FB Bus constructs 5-12
flag constructs 5-16
FPU operation constructs 5-11
ID Bus constructs 5-11
memory completion constructs 5-6
memory start constructs 5-4
syntax 5-1

Macroinstruction 1-1
MAG register 2-24
Mantissa ALU 2-26
Mantissa logic 2-21
Memory control micro-orders 3-30
Micro-order 1-1
Microassembler 1-1
Microcode 1-1
Microfield 1-1

Microfields
AA 3-24
AB 3-24
AGB 3-28
AL 3-29
AOP 3-29
CPDS 3-35
CPMS 3-34
FCW 3-90
FL 3-92
FOP 3-88
FR 3-86
FRG 3-95
FS 3-87
FWR 3-89
IA 3-71
IB 3-71
ID 3-75
IL 3-84
lOP 3-77
IY 3-79
MEMC 3-32
MEMS 3-31
NAC 3-2
NAC:COP 3-4
NAC:DSR 3-23
NAC:TSEL 3-6
NAC:UCOP 3-20
RAND:ATU:ATUO 3-50
RAND:ATU:ATUI 3-58
RAND:ATU:SPAD 3-59
RAND:FIX:COVS 3-60
RAND:FIX:LOAD 3-63
RAND:FIX:SPAD 3-63
RAND:FLT:EXP 3-66
RAND:FLT:SCNT 3-69
RAND:FLT:SGN 3-65
RAND:GEN:REGO 3-40
RAND:GEN:REGI 3-48
RAND:GEN:SPAD 3-49
RS 3-77

Microinstruction 1-1
Microinstruction register 2-2



Microorders
o 3-99
A 3-23, 3-33
A64 3-68
AC 3-48, 3-58
ACO 3-71
AC1 3-72
AC2 3-72
AC3 3-72
ACA 3-68
ACN 3-68
ACW 3-68
AD 3-77
ADD 3-29, 3-69, 3-79, 3-88
AF46 3-45
AF57 3-45
AG 3-34
AGO 3-24
AG1 3-25
AG2 3-25
AG3 3-25
AGA 3-39
ALC 3-62
ANC 3-78
AND 3-78
AOFF 3-57
AON 3-57
ARO 3-26
AR1 3-26
AR2 3-26
AR3 3-27
AR4 3-27
AR5 3-27
AS 3-75
ATD 3-38
ATON 3-11
ATS 3-38
AV 3-63
B 3-28
BLO 3-81
BL1 3-81
BR 3-76
BRO 3-82
BR1 3-81
BSW 3-80
BSX 3-84
BYTE 3-56
C 3-28, 3-30
CA 3-77
CABT 3-5
CAD 3-79
CBLK 3-10
CD 3-77
CDR 3-39
CDSP 3-5

CDW 3-41
CIR 3-38
CIRV 3-8
CJMP 3-5
CJSR 3-5
CLRC 3-61
CMO 3-50
CMP 3-69
CN 3-76
CNT4 3-17
CNT8 3-17
COM1 3-14
COM2 3-15
COMP 3-14
COVK 3-60
COVR 3-60
CPD31 3-7
CRRY 3-18
CRST 3-6
CRTN 3-6
CRY 3-17
CRY28 3-16
CSR 3-78
D 3-28, 3-90, 3-95
D31 3-13
DA 3-77
DECD 3-42
DECS 3-41
DES 3-27, 3-74, 3-94
DF 3-58
DISI 3-55
DR 3-87
DSGN 3-13
DSPA 3-21
DSPR 3-22
DVP 3-70
E 3-24
ECRE 3-10
ECRY 3-20
EDT 3-80
EFA 3-29
EPAR 3-47
F 3-23
F31 3-16
FA 3-86
FB 3-87
FCRY 3-20
FCY 3-42
FGO 3-92
FG1 3-92
FG2 3-93
FG3 3-93
FG4 3-93
FG5 3-93
FG6 3-92

Index-3



Index-4

Microorders, cont.
FLG [0-7] 3-9
FNZ 3-70
FP 3-72
FPO 3-91
FP1 3-91
FP2 3-91
FP3 3-91
FRCD 3-42
FRCS 3-41
FRSD 3-44
FSGN 3-17
FZR 3-18
GCRE 3-10
GRO 3-73
GR1 3-73
GR2 3-73
GR3 3-74
GR4 3-74
GR5 3-74
HF 3-35
HLO 3-83
HRO 3-82
HRT 3-83
IA 3-35
ICAT 3-56
IDV 3-98
IHC 3-91

INCD 3-42
INCS 3-41
INDR 3-9
INTR 3-7
lOB 3-8
IOC 3-38
IOEN 3-12
IOFF 3-55
ION 3-55
lOT 3-15
IPS 3-37
IPST 3-8, 3-56
IRES 3-14
IVLD 3-12
IXPC 3-12
IY 3-34, 3-36
L 3-28
LAB 3-66
LAR 3-38
LAT 3-26
LATS 3-51
LAX 3-67
LCN 3-70
LCRE 3-10, 3-50
LCRY 3-61
LD 3-48
LDAD 3-42

LDAS 3--41
LDCY 3-62
LDSD 3-44
LEAP 3-21
LEF 3-70
LESR 3-10
LF 3-35
LFLG 3-46
LFS 3-98
LGD 3-96
LIPS 3-54
LLAR 3-53
LOVC 3-61
LPOP 3-22
LPSR 3-61
LPTA 3-53
LS 3-49, 3-59, 3-64, 3-88
LSR 3-21
LST 3-98
LT 3-48, 3-58, 3-63
LWD 3-98
LWM 3-96
LWR 3-97
LXY 3-97
LY 3-97
LZD 3-71

M 3-30, 3-85
M1 3-73
MAX 3-92
MFSO 3-44
MFS1 3-44
MH 3-94
ML 3-94
MM 3-34
MOV 3-65
MP 3-86
MS 3-75
N 3-30, 3-31, 3-33, 3-34, 3-36, 3-40, 3-48, 3-49,

3-50, 3-58, 3-59, 3-60, 3-63, 3-64, 3-67,
3-69, 3-85, 3-94, 3-95

NA 3-63
NEG 3-65
NM 3-85
NPDR 3-47, 3-57
NY 3-85
ONE 3-25
OPTA 3-54
OR 3-78
OVF 3-18
PASS 3-80
PC 3-37
PCN 3-37
PCPD 3-22
PCX 3-37
PD 3-76



Microorders, cont.
PRGA 3-54
PRGB 3-11
PSB 3-29
PSR 3-79
PUSH 3-22
Q 3-90
R 3-33, 3-90
RB 3-31, 3-87
RD 3-31
RLO 3-96
RMAX 3-9
RND 3-8
RNGO 3-9
RS 3-88
RSBR 3-52
RSGN 3-16
RSRF 3-53
RST 3-69
RW 3-31
S 3-89
S64 3-67
S@ 3-32
SA 3-65
SAEB 3-19
SAGB 3-20
SALB 3-19
SAMP 3-2
SB 3-73
SC 3-75
SETC 3-62
SFS 3-97
SGE 3-18
SIO 3-56
SKFT 3-46
SL 3-72
SMR 3-79
SNM 3-67
SOVK 3-61
SP 3-25
SPCN 3-47
SPY4 3-47
SRC 3-27, 3-74, 3-93
SS 3-75
SST 3-97
SUB 3-29, 3-67, 3-89
TAD 3-89
TPSH 3-22
TRG 3-36
TRI 3-65
TRN 3-66
TRUE 3-7
TSB 3-89
TWB 3-6
TWO 3-26

UAEB 3-19 Index-5
UAGB 3-19
UALB 3-19
UFS 3-95
USMT 3-7
USS 3-36
VLD 3-11
VPTE 3-11
VSBR 3-11
W 3-33
WB 3-32
WC 3-49, 3-59, 3-64
WD 3-32
WORD 3-57
WRRM 3-53
WS 3-49, 3-59, 3-64
WSBR 3-52
WSKP 3-43
WSX 3-84
WW 3-32
WZX 3-84
X 3-33
X64 3-99
XCTF 3-8
XOR 3-66, 3-78
XTND 3-48, 3-57
Y 3-30, 3-85
YO 3-16
Y28 3-12
Y29 3-13
Y30 3-13
Y31 3-13
ZER 3-39, 3-66, 3-92
ZR 3-76, 3-88

Microprogram counters 2-3
Microprogramming 1-2

examples 4-1
Microroutine 1-1
Microsequencer 1-3, 2-2

micro-orders 3-2
tests 2-7, 3-7

Microstack 2-3
Microstack Input Multiplexer 2-3
Microword format 3-1
Multiply ALU 2-28
Multiply hardware 2-26
MV/l0000 computer 1-1

architecture 2-1
buses 1-4
operation 2-1
subsystems 1-2



Index-6

NAC, see Next Address Control
Narrow and wide operations 2-8
Next Address Control 3-2

Page fault A-I
Page table addressing logic 2-38
Page zero locations E-l
PDR, see CPD Bus register
Processor Status Register 2-18
PSR, see Processor Status Register

RA multiplexer, see RAM Address multiplexer
RAM Address multiplexer 2-5
Random micro-orders 3-39
Read/write/execute protection 2-40
Referenced/modified RAM 2-38
Register file

AG 2-33
floating-point 2-22
IALU 2-10

Register File In multiplexer 2-36
RFIN multiplexer, see Register File In multiplexer
Ring protection 2-39

SA and SB registers 2-31
SCP

see System Control Processor
Scratch pad 2-12, H-l
Sign logic 2-30, 2-31
SPAD, see Scratch pad
SPAR register 2-12
Starting microaddress 2-5
STUAD, see Starting microacldress
System Control Processor 1-2, 2-7

Terminology 1-1
Tests 2-7

Address Translation' Unit 3-9
floating-point 3-18
integer ALU 3-12
microsequencer 3-7

Top of stack register 2-4, 2-5
TOS, see Top of stack register
Transfer register 2-13

Validity RAM 2-38

WCS
see Writable Control Store

Working register 2-26
Writable Control Store 1-2, 2-2

X and Y registers 2-27

YSEL counter 2-28



Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Comment Form

Title: _

Document No. _

o You (can, cannot) find things easily. 0 Other:

o Language (is, is not) appropriate.

o Technical terms (are, are not) defined
as needed.

Yes No

o 0

o 0

o 0

o 0

o Learning to use the equipment

o As a reference

o As an introduction to the
product

o Visuals (are,are not) wel1 designed.

o Labels and captions (are,are not) clear.

o Other:

o To instruct a class.

o Other:



FOLD

TAPE

FOLD

FOLD

TAPE

FOLD

II "I NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

_.DataGeneral
ATTN:Technical Publications
62 Alexander Drive
Research Triangle Park, NC 27709



~.DataGeneral
TIPS ORDER FORM

Technical Information & Publications Service

TP

ZIP _ ZIP _

BILL TO:
COMPANYNAME _

ADDRESS _

CITY _

STATE _

ATTN: _

SHIP TO: (if different)

COMPANYNAME _

ADDRESS
CITY _

STATE _

ATTN: _

o Charge my 0 Visa D MasterCard
Acc't No. Expiration Date _

QTY MODEL # DESCRIPTION UNIT LINE TOTAL
PRICE DISC PRICE

(Additional items can be included on second order form) [Minimum order is $50.00] TOTAL

Tax Exempt # Sales Tax
or Sales Tax (if applicable)

Shipping

TOTAL

METHOD OF PAYMENT --------- SHIP VIA
o Check or money order enclosed 0 DGC will select best way (U.P.S or Postal)

For orders less than $100.00
o Other:

o U.P.S. Blue Label
o Air Freight
D Other

o Purchase Order Number: _

NOTE: ORDERS LESS THAN $100, INCLUDE $5.00 FOR SHIPPING AND HANDLING.

Person to contactabout this order Phone _ Extension

Mail Orders to:

Data General Corporation
Attn: Educational Services/TIPS F019
4400 Computer Drive
Westboro, MA 01580
Tel. (617) 366-8911 ext. 4032

DISCOUNTS APPLY TO
MAIL ORDERS ONLY

Buyer's Authorized Signature
(agrees to terms & conditions on reverse side)

Title

DGC Sales Representative (If Known)

012-1780

Date

Badge #

(~,)



DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS

Data General Corporation ("DGC") provides its Technical Infonnation and Publications Service (TIPS) solely in accordance with the following
tenns and conditions and more specifically to the Customer signing the EducatioIl'a1 Services TIPS Order Fonn shown on the reverse hereof
which is accepted by DGC.

1. PRICES
Prices for DGC publications will be as stated in the Educational Services Literature Catalog in effect at the time DGC accepts Buyer's order or
as specified on an authorized DGC quotation in force at the time of receipt by DGC of the Order Fonn shown on the reverse hereof. Prices are
exclusive of all excise, sales, use or similar taxes and, therefore are subject to an increase equal in amount to any tax DGC may be required to
collect or pay on the sale, license or delivery of the materials provided hereunder.

2. PAYMENT
Tenns are net cash on or prior to delivery except where satisfactory open account credit is established, in which case tenns are net thirty (30)
days from date of invoice.

3. SHIPMENT
Shipment will be made F.O.B. Point of Origin. DGC nonnally ships either by UPS or U.S. Mail or other appropriate method depending upon
weight, unless Customer designates a specific method and/or carrier on the Order Fonn. In any case, DGC assumes no liability with regard
to loss, damage or delay during shipment.

4. TERM
Upon execution by Buyer and acceptance by DGC, this agreement shall continue to remain in effect until tenninated by either party upon
thirty (30) days prior written notice. It is the intent of the parties to leave this Agreement in effect so that all subsequent orders for DGC
publications will be governed by the tenns and conditions of this Agreement.

5. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software which is the subject
matter of the publication(s) ordered hereunder.

6. DATA AND PROPRIETARY RIGHTS
Portions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall abide by such
markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all designs, engineering details
and other data pertaining to the products described in such publication. Licensed software materials are provided pursuant to the tenns and
conditions of the Program License Agreement (PLA) between the Customer and DGC and such PLA is made a part of and incorporated into
this Agreement by reference. A copyright notice on any data by itself does not constitute or evidence a publication or public disclosure.

7. DISCLAIMER OF WARRANTY
DGC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANT­
ABILITY AND FITNESS FOR PARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS SUPPLIED HEREUNDER.

8. LIMITATIONS OF LIABILITY
IN NO EVENT SHALL DGC BE LIABLE FOR (I) ANY COSTS, DAMAGES OR EXPENSES ARISING OUT OF OR IN CONNEC­
TION WITH ANY CLAIM BY ANY PERSON THAT USE OF THE PUBLICATION OF INFORMATION CONTAINED THEREIN
INFRINGES ANY COPYRIGHT OR TRADE SECRET RIGHT OR (II) ANY INCIDENTIAL, SPECIAL, DIRECT OR CONSEQUEN­
TIAL DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO LOSS OF DATA, PROGRAMS OR LOST PROFITS.

9. GENERAL
A valid contract binding upon DGC will come into being only at the time of DGC's acceptance of the referenced Educational Services Order
Fonn. Such contract is governed by the laws of the Commonwealth of Massachusetts. Such contract is not assignable. These tern1S and con­
ditions constitute the entire agreement between the parties with respect to the subject matter hereof and supersedes all prior oral or written
communications, agreements and understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or addi­
tional tenns and conditions which may appear on any order submitted by Customer.

DISCOUNT SCHEDULES

DISCOUNTS APPLY TO MAIL ORDERS ONLY.

LINE ITEM DISCOUNT

5-14 manuals of the same part number - 20%
15 or more manuals of the same part number - 30%

DISCOUNTS APPLY TO PRICES SHOWN IN THE CURRENT TIPS CATALOG ONLY.



t.DataGeneral

TIPS ORDERING PROCEDURE:

Technical literature may be ordered through the Customer Education Service's Technical Information
and Publications Service (TIPS).

1. Turn to the TIPS Order Form.

2. Fill in the requested information. If you need more space to list the items you are ordering, use an
additional form. Transfer the subtotal from any additional sheet to the space marked "subtotal"
on the form.

3. Do not forget to include your MAIL ORDER ONLY discount. (See discount schedules on the
back of the TIPS Order Form.)

4. Total your order. (MINIMUM ORDER/CHARGE after discounts of $50.00.)

If your order totals less than 100.00, enclose a certified check or money order for the total (include
sales tax, or your tax exempt number, if applicable) plus $5.00 for shipping and handling.

5. Please indicate on the Order Form if you have any special shipping requirements. Unless specified,
orders are normally shipped U.P.S.

6. Read carefully the terms and conditions of the TIPS program on the reverse side of the Order
Form.

7. Sign on the line provided on the form and enclose with payment. Mail to:

TIPS
Educational Services - M.S. F019
Data General Corporation
4400 Computer Drive
Westboro, MA 01580

8. We'll take care of the rest!

(~\)



Date _

Zip _

0 _

o Batch (Central)

o Batch (Via RJE)

o On-Line Interactive

Ext. _

Installation Membership Form

Position _

City State _

No. _

o OEM
o End User
o System House
o Government

Qty. Installed IQty. On Order 0 HASP 0 X.25

0 HASP II 0 SAM

0 RJE80 0 CAM

0 RCX 70 0 XODIACTM

0 RSTCP 0 OG/SNA

0 4025 0 3270

0 Other

Specify

0 AOS 0 ROOS

0 AOS/VS 0 DOS

0 AOS/RT32 0 RTOS

0 MP/OS 0 Other
From whom was your machine(s)

0 MP/AOS
purchased?

Specify 0 Data General Corp.
0 Other

Specify
0 ALGOL 0 BASIC

0 OG/L 0 Assembler

0 COBOL 0 FORTRAN 77 Are you interested in joining a

0 Interactive 0 FORTRAN 5 special interest or regional

rOROL n DDr. "
Data General Users Group?

Telephone: Area Code _

Name _

Address _

Company, Organization or School _

t.DataGeneral
usersgpoup

•
•
•
•
•
•
•
•
•
•
•
I

I

•
•
I

•
I

I

I

I,
I

I,,,,,,,,
I

I

I

I

l..l.J1
~I
......],

6:1,
~I
0,
QI
CJ
~,

3'
<:t:1
1-,a,,

I,
I,,,,,
I

I,,,,
I

I

I,



FOLD

TAPE

FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee: .

_.DataGeneral
ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
Westboro, MA 01581

FOLD

TAPE

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES



Company, Organization or School _

Zip _

Date _

o Data General Corp.
o Other

Specify _

From whom was your machine(s)
purchased?

Are you interested in joining a
special interest or regional
Data General Users Group?

0 _

o Batch (Central)

o Batch (Via RJE)

o On-Line Interactive

Ext. _

Installation Membership Form

City State _

Position _

No. _

o OEM
o End User
o System House
o Government

AOS 0 RDOS

AOS/VS 0 DOS

AOS/RT32 0 RTOS

MP/OS 0 Other

MP/AOS

Specify

ALGOL 0 BASIC

DG/L 0 Assembler

COBOL 0 FORTRAN 77

Interactive 0 FORTRAN 5
COBOL 0 RPG II

Qty. Installed Qty. On Order 0 HASP 0 X.25

0 HASP II 0 SAM

0 RJE80 0 CAM

0 RCX 70 0 XODIACTM

0 RSTCP 0 DG/SNA

0 4025 0 3270

0 Other

Specify

Telephone: Area Code _

Address _

Name _

t.DataGeneral
usersgpoup

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

IJJI
!;I
......J I

fiji
t l

01

°1c.::>
2;1

3 1

<CI
f-Ia,

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



FOLD

TAPE

FOLD

III II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

_.DataGeneral
ATTN: Users Group Coordinator (C-228)
4400 Computer Drive
West boro, MA 01581

FOLD

TAPE

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES


	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	3-64
	3-65
	3-66
	3-67
	3-68
	3-69
	3-70
	3-71
	3-72
	3-73
	3-74
	3-75
	3-76
	3-77
	3-78
	3-79
	3-80
	3-81
	3-82
	3-83
	3-84
	3-85
	3-86
	3-87
	3-88
	3-89
	3-90
	3-91
	3-92
	3-93
	3-94
	3-95
	3-96
	3-97
	3-98
	3-99
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	C-1
	C-2
	D-1
	D-2
	E-1
	E-2
	F-1
	F-2
	G-1
	G-2
	H-1
	H-2
	H-3
	H-4
	H-5
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	replyA
	replyB
	replyC
	replyD
	replyE
	replyF
	replyG
	replyH
	replyI

