GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc9346



Internet Engineering Task Force (IETF) M. Chen Request for Comments: 9346 Huawei Obsoletes: 5316 L. Ginsberg Category: Standards Track Cisco Systems ISSN: 2070-1721 S. Previdi

                                                   Huawei Technologies
                                                               X. Duan
                                                          China Mobile
                                                         February 2023
IS-IS Extensions in Support of Inter-Autonomous System (AS) MPLS and
                     GMPLS Traffic Engineering

Abstract

 This document describes extensions to the Intermediate System to
 Intermediate System (IS-IS) protocol to support Multiprotocol Label
 Switching (MPLS) and Generalized MPLS (GMPLS) Traffic Engineering
 (TE) for multiple Autonomous Systems (ASes).  It defines IS-IS
 extensions for the flooding of TE information about inter-AS links,
 which can be used to perform inter-AS TE path computation.
 No support for flooding information from within one AS to another AS
 is proposed or defined in this document.
 This document builds on RFC 5316 by adding support for IPv6-only
 operation.
 This document obsoletes RFC 5316.

Status of This Memo

 This is an Internet Standards Track document.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Further information on
 Internet Standards is available in Section 2 of RFC 7841.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9346.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1.  Introduction
   1.1.  Requirements Language
 2.  Problem Statement
   2.1.  A Note on Non-objectives
   2.2.  Per-Domain Path Determination
   2.3.  Backward-Recursive Path Computation
 3.  Extensions to IS-IS TE
   3.1.  Choosing the TE Router ID Value
   3.2.  Inter-AS Reachability Information TLV
   3.3.  TE Router ID
   3.4.  Sub-TLVs for Inter-AS Reachability Information TLV
     3.4.1.  Remote AS Number Sub-TLV
     3.4.2.  IPv4 Remote ASBR Identifier Sub-TLV
     3.4.3.  IPv6 Remote ASBR Identifier Sub-TLV
     3.4.4.  IPv6 Local ASBR Identifier Sub-TLV
   3.5.  Sub-TLVs for IS-IS Router CAPABILITY TLV
     3.5.1.  IPv4 TE Router ID Sub-TLV
     3.5.2.  IPv6 TE Router ID Sub-TLV
 4.  Procedure for Inter-AS TE Links
   4.1.  Origin of Proxied TE Information
 5.  Security Considerations
 6.  IANA Considerations
   6.1.  Inter-AS Reachability Information TLV
   6.2.  Sub-TLVs for the Inter-AS Reachability Information TLV
   6.3.  Sub-TLVs for the IS-IS Router CAPABILITY TLV
 7.  References
   7.1.  Normative References
   7.2.  Informative References
 Appendix A.  Changes to RFC 5316
 Acknowledgements
 Authors' Addresses

1. Introduction

 [RFC5305] defines extensions to the IS-IS protocol [RFC1195] to
 support intra-area Traffic Engineering (TE).  The extensions provide
 a way of encoding the TE information for TE-enabled links within the
 network (TE links) and flooding this information within an area.  The
 extended IS reachability TLV and Traffic Engineering router ID TLV,
 which are defined in [RFC5305], are used to carry such TE
 information.  The extended IS reachability TLV has several nested
 sub-TLVs that describe the TE attributes for a TE link.
 [RFC6119] and [RFC5307] define similar extensions to IS-IS in support
 of IPv6 and GMPLS TE, respectively.
 Requirements for establishing Multiprotocol Label Switching (MPLS) TE
 Label Switched Paths (LSPs) that cross multiple Autonomous Systems
 (ASes) are described in [RFC4216].  As described in [RFC4216], a
 method SHOULD provide the ability to compute a path spanning multiple
 ASes.  So a path computation entity that may be the head-end Label
 Switching Router (LSR), an AS Border Router (ASBR), or a Path
 Computation Element (PCE) [RFC4655] needs to know the TE information
 not only of the links within an AS but also of the links that connect
 to other ASes.
 In this document, the Inter-AS Reachability Information TLV is
 defined to advertise inter-AS TE information, and four sub-TLVs are
 defined for inclusion in the Inter-AS Reachability Information TLV to
 carry the information about the Remote AS Number, Remote ASBR
 Identifier, and IPv6 Local ASBR Identifier.  The sub-TLVs defined in
 [RFC5305], [RFC6119], and other documents for inclusion in the
 extended IS reachability TLV for describing the TE properties of a TE
 link are applicable to be included in the Inter-AS Reachability
 Information TLV for describing the TE properties of an inter-AS TE
 link as well.  Also, two more sub-TLVs are defined for inclusion in
 the IS-IS Router CAPABILITY TLV to carry the TE Router ID when the TE
 Router ID is needed to reach all routers within an entire IS-IS
 routing domain.  The extensions are equally applicable to IPv4 and
 IPv6 as identical extensions to [RFC5305] and [RFC6119].  Detailed
 definitions and procedures are discussed in the following sections.
 This document does not propose or define any mechanisms to advertise
 any other extra-AS TE information within IS-IS.  See Section 2.1 for
 a full list of non-objectives for this work.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Problem Statement

 As described in [RFC4216], in the case of establishing an inter-AS TE
 LSP that traverses multiple ASes, the Path message [RFC3209] may
 include the following elements in the Explicit Route Object (ERO) in
 order to describe the path of the LSP:
  • a set of AS numbers as loose hops and/or
  • a set of LSRs including ASBRs as loose hops.
 Two methods for determining inter-AS paths have been described
 elsewhere.  The per-domain method [RFC5152] determines the path one
 domain at a time.  The backward-recursive method [RFC5441] uses
 cooperation between PCEs to determine an optimum inter-domain path.
 The sections that follow examine how inter-AS TE link information
 could be useful in both cases.

2.1. A Note on Non-objectives

 It is important to note that this document does not make any change
 to the confidentiality and scaling assumptions surrounding the use of
 ASes in the Internet.  In particular, this document is conformant to
 the requirements set out in [RFC4216].
 The following features are explicitly excluded:
  • There is no attempt to distribute TE information from within one

AS to another AS.

  • There is no mechanism proposed to distribute any form of TE

reachability information for destinations outside the AS.

  • There is no proposed change to the PCE architecture or usage.
  • TE aggregation is not supported or recommended.
  • There is no exchange of private information between ASes.
  • No IS-IS adjacencies are formed on the inter-AS link.

2.2. Per-Domain Path Determination

 In the per-domain method of determining an inter-AS path for an MPLS-
 TE LSP, when an LSR that is an entry-point to an AS receives a Path
 message from an upstream AS with an ERO containing a next hop that is
 an AS number, it needs to find which LSRs (ASBRs) within the local AS
 are connected to the downstream AS.  That way, it can compute a TE
 LSP segment across the local AS to one of those LSRs and forward the
 Path message to that LSR and hence into the next AS.  See Figure 1
 for an example.
              R1------R3----R5-----R7------R9-----R11
                      |     | \    |      / |
                      |     |  \   |  ----  |
                      |     |   \  | /      |
              R2------R4----R6   --R8------R10----R12
                         :              :
              <-- AS1 -->:<---- AS2 --->:<--- AS3 --->
                   Figure 1: Inter-AS Reference Model
 The figure shows three ASes (AS1, AS2, and AS3) and twelve LSRs (R1
 through R12).  R3 and R4 are ASBRs in AS1.  R5, R6, R7, and R8 are
 ASBRs in AS2.  R9 and R10 are ASBRs in AS3.
 If an inter-AS TE LSP is planned to be established from R1 to R12,
 the AS sequence will be: AS1, AS2, AS3.
 Suppose that the Path message enters AS2 from R3.  The next hop in
 the ERO shows AS3, and R5 must determine a path segment across AS2 to
 reach AS3.  It has a choice of three exit points from AS2 (R6, R7,
 and R8), and it needs to know which of these provide TE connectivity
 to AS3 and whether the TE connectivity (for example, available
 bandwidth) is adequate for the requested LSP.
 Alternatively, if the next hop in the ERO is an entry ASBR for AS3
 (say R9), R5 needs to know which of its exit ASBRs has a TE link that
 connects to R9.  Since there may be multiple ASBRs that are connected
 to R9 (both R7 and R8 in this example), R5 also needs to know the TE
 properties of the inter-AS TE links so that it can select the correct
 exit ASBR.
 Once the Path message reaches the exit ASBR, any choice of inter-AS
 TE link can be made by the ASBR if not already made by the entry ASBR
 that computed the segment.
 More details can be found in Section 4 of [RFC5152], which clearly
 points out why advertising of inter-AS links is desired.
 To enable R5 to make the correct choice of exit ASBR, the following
 information is needed:
  • List of all inter-AS TE links for the local AS.
  • TE properties of each inter-AS TE link.
  • AS number of the neighboring AS connected to by each inter-AS TE

link.

  • Identity (TE Router ID) of the neighboring ASBR connected to by

each inter-AS TE link.

 In GMPLS networks, further information may also be required to select
 the correct TE links as defined in [RFC5307].
 The example above shows how this information is needed at the entry-
 point ASBRs for each AS (or the PCEs that provide computation
 services for the ASBRs).  However, this information is also needed
 throughout the local AS if path computation functionality is fully
 distributed among LSRs in the local AS, for example, to support LSPs
 that have start points (ingress nodes) within the AS.

2.3. Backward-Recursive Path Computation

 Another scenario using PCE techniques has the same problem.
 [RFC5441] defines a PCE-based TE LSP computation method (called
 "Backward-Recursive Path Computation (BRPC)") to compute optimal
 inter-domain constrained MPLS-TE or GMPLS LSPs.  In this path
 computation method, a specific set of traversed domains (ASes) are
 assumed to be selected before computation starts.  Each downstream
 PCE in domain(i) returns to its upstream neighbor PCE in domain(i-1)
 a multipoint-to-point tree of potential paths.  Each tree consists of
 the set of paths from all boundary nodes located in domain(i) to the
 destination where each path satisfies the set of required constraints
 for the TE LSP (bandwidth, affinities, etc.).
 So a PCE needs to select boundary nodes (that is, ASBRs) that provide
 connectivity from the upstream AS.  In order for the tree of paths
 provided by one PCE to its neighbor to be correlated, the identities
 of the ASBRs for each path need to be referenced.  Thus, the PCE must
 know the identities of the ASBRs in the remote AS that are reached by
 any inter-AS TE link, and, in order to provide only suitable paths in
 the tree, the PCE must know the TE properties of the inter-AS TE
 links.  See the following figure as an example.
                 PCE1<------>PCE2<-------->PCE3
                 /       :             :
                /        :             :
              R1------R3----R5-----R7------R9-----R11
                      |     | \    |      / |
                      |     |  \   |  ----  |
                      |     |   \  | /      |
              R2------R4----R6   --R8------R10----R12
                         :              :
              <-- AS1 -->:<---- AS2 --->:<--- AS3 --->
              Figure 2: BRPC for Inter-AS Reference Model
 The figure shows three ASes (AS1, AS2, and AS3), three PCEs (PCE1,
 PCE2, and PCE3), and twelve LSRs (R1 through R12).  R3 and R4 are
 ASBRs in AS1.  R5, R6, R7, and R8 are ASBRs in AS2.  R9 and R10 are
 ASBRs in AS3.  PCE1, PCE2, and PCE3 cooperate to perform inter-AS
 path computation and are responsible for path segment computation
 within their own domain(s).
 If an inter-AS TE LSP is planned to be established from R1 to R12,
 the traversed domains are assumed to be selected (AS1->AS2->AS3), and
 the PCE chain is PCE1->PCE2->PCE3.  First, the path computation
 request originated from the Path Computation Client (PCC) (R1) is
 relayed by PCE1 and PCE2 along the PCE chain to PCE3.  Then, PCE3
 begins to compute the path segments from the entry boundary nodes
 that provide connection from AS2 to the destination (R12).  But, to
 provide suitable path segments, PCE3 must determine which entry
 boundary nodes provide connectivity to its upstream neighbor AS
 (identified by its AS number) and must know the TE properties of the
 inter-AS TE links.  In the same way, PCE2 also needs to determine the
 entry boundary nodes according to its upstream neighbor AS and the
 inter-AS TE link capabilities.
 Thus, to support BRPC, the same information listed in Section 2.2 is
 required.  The AS number of the neighboring AS connected to by each
 inter-AS TE link is particularly important.

3. Extensions to IS-IS TE

 Note that this document does not define mechanisms for distribution
 of TE information from one AS to another, does not distribute any
 form of TE reachability information for destinations outside the AS,
 does not change the PCE architecture or usage, does not suggest or
 recommend any form of TE aggregation, and does not feed private
 information between ASes.  See Section 2.1.
 In this document, the Inter-AS Reachability Information TLV is
 defined for the advertisement of inter-AS TE links.  Four sub-TLVs
 are also defined for inclusion in the Inter-AS Reachability
 Information TLV to carry the information about the neighboring AS
 number, the Remote ASBR Identifier, and IPv6 Local ASBR Identifier of
 an inter-AS link.  The sub-TLVs defined in [RFC5305], [RFC6119], and
 other documents for inclusion in the extended IS reachability TLV are
 applicable to be included in the Inter-AS Reachability Information
 TLV for the advertisement of inter-AS TE links.
 This document also defines two sub-TLVs for inclusion in the IS-IS
 Router CAPABILITY TLV to carry the TE Router ID when the TE Router ID
 is needed to reach all routers within an entire IS-IS routing domain.
 While some of the TE information of an inter-AS TE link may be
 available within the AS from other protocols, in order to avoid any
 dependency on where such protocols are processed, this mechanism
 carries all the information needed for the required TE operations.

3.1. Choosing the TE Router ID Value

 Subsequent sections specify advertisement of a TE Router ID value for
 IPv4 and/or IPv6.  This section defines how this value is chosen.
 A TE Router ID MUST be an address that is unique within the IS-IS
 domain and stable, i.e., it can always be referenced in a path that
 will be reachable from multiple hops away, regardless of the state of
 the node's interfaces.
 When advertising an IPv4 address as a TE Router ID, if the Traffic
 Engineering router ID TLV [RFC5305] is being advertised, then the
 address SHOULD be identical to the address in the Traffic Engineering
 router ID TLV.  The TE Router ID MAY be identical to an IP Interface
 Address [RFC1195] advertised by the originating IS so long as the
 address meets the requirements specified above.
 When advertising an IPv6 address as a TE Router ID, if the IPv6 TE
 Router ID TLV [RFC6119] is being advertised, then the address SHOULD
 be identical to the address in the IPv6 TE Router ID TLV.  The TE
 Router ID MAY be identical to a non-link-local IPv6 Interface Address
 advertised by the originating IS in a Link State PDU using the IPv6
 Interface Address TLV [RFC5308] so long as the address meets the
 requirements specified above.

3.2. Inter-AS Reachability Information TLV

 The Inter-AS Reachability Information TLV has type 141 (see
 Section 6.1) and contains a data structure consisting of:
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Router ID                                     (4 octets)    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   Default Metric                              | (3 octets)
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |     Flags     |                                 (1 octet)
    +-+-+-+-+-+-+-+-+
    |Sub-TLVs Length|                                 (1 octet)
    +-+-+-+-+-+-+-+-+-+-+-+-
    | Sub-TLVs ...                                    (0-246 octets)
    +-+-+-+-+-+-+-+-+-+-+-+-
 Flags consists of the following:
        0 1 2 3 4 5 6 7
       +-+-+-+-+-+-+-+-+
       |S|D| Rsvd      |
       +-+-+-+-+-+-+-+-+
 where:
 S bit:  If the S bit is set(1), the Inter-AS Reachability Information
    TLV MUST be flooded across the entire routing domain.  If the S
    bit is not set(0), the TLV MUST NOT be leaked between levels.
    This bit MUST NOT be altered during the TLV leaking.
 D bit:  When the Inter-AS Reachability Information TLV is leaked from
    Level 2 (L2) to Level 1 (L1), the D bit MUST be set.  Otherwise,
    this bit MUST be clear.  Inter-AS Reachability Information TLVs
    with the D bit set MUST NOT be leaked from Level 1 to Level 2.
    This is to prevent TLV looping.
 Reserved (Rsvd):  Reserved bits MUST be zero when originated and
    ignored when received.
 Compared to the extended IS reachability TLV, which is defined in
 [RFC5305], the Inter-AS Reachability Information TLV replaces the "7
 octets of System ID and Pseudonode Number" field with a "4 octets of
 Router ID" field and introduces an extra "control information" field,
 which consists of a flooding-scope bit (S bit), an up/down bit (D
 bit), and 6 reserved bits.
 The Router ID field of the Inter-AS Reachability Information TLV is 4
 octets in length and has a value as defined in Section 3.1.  If the
 originating node does not support IPv4, then the reserved value
 0.0.0.0 MUST be used in the Router ID field, and the IPv6 Router ID
 sub-TLV MUST be present in the Inter-AS Reachability Information TLV.
 The Router ID could be used to indicate the source of the Inter-AS
 Reachability Information TLV.
 The flooding procedures for the Inter-AS Reachability Information TLV
 are identical to the flooding procedures for the GENINFO TLV, which
 are defined in Section 4 of [RFC6823].  These procedures have been
 previously discussed in [RFC7981].  The flooding-scope bit (S bit)
 SHOULD be set to 0 if the flooding scope is to be limited to within
 the single IGP area to which the ASBR belongs.  It MAY be set to 1 if
 the information is intended to reach all routers (including area
 border routers, ASBRs, and PCEs) in the entire IS-IS routing domain.
 The choice between the use of 0 or 1 is an AS-wide policy choice, and
 configuration control SHOULD be provided in ASBR implementations that
 support the advertisement of inter-AS TE links.
 The sub-TLVs defined in [RFC5305], [RFC6119], and other documents for
 describing the TE properties of a TE link are also applicable to the
 Inter-AS Reachability Information TLV for describing the TE
 properties of an inter-AS TE link.  Apart from these sub-TLVs, four
 sub-TLVs are defined for inclusion in the Inter-AS Reachability
 Information TLV defined in this document:
        +==============+========+=============================+
        | Sub-TLV type | Length | Name                        |
        +==============+========+=============================+
        | 24           | 4      | Remote AS Number            |
        +--------------+--------+-----------------------------+
        | 25           | 4      | IPv4 Remote ASBR Identifier |
        +--------------+--------+-----------------------------+
        | 26           | 16     | IPv6 Remote ASBR Identifier |
        +--------------+--------+-----------------------------+
        | 45           | 16     | IPv6 Local ASBR Identifier  |
        +--------------+--------+-----------------------------+
                                Table 1
 Detailed definitions of these four sub-TLVs are described in Sections
 3.4.1, 3.4.2, 3.4.3, and 3.4.4.

3.3. TE Router ID

 The Traffic Engineering router ID TLV and IPv6 TE Router ID TLV,
 which are defined in [RFC5305] and [RFC6119], respectively, only have
 area flooding scope.  When performing inter-AS TE, the TE Router ID
 MAY be needed to reach all routers within an entire IS-IS routing
 domain, and it MUST have the same flooding scope as the Inter-AS
 Reachability Information TLV does.
 [RFC7981] defines a generic advertisement mechanism for IS-IS, which
 allows a router to advertise its capabilities within an IS-IS area or
 an entire IS-IS routing domain.  [RFC7981] also points out that the
 TE Router ID is a candidate to be carried in the IS-IS Router
 CAPABILITY TLV when performing inter-area TE.
 This document uses such mechanism for TE Router ID advertisement when
 the TE Router ID is needed to reach all routers within an entire IS-
 IS routing domain.  Two sub-TLVs are defined for inclusion in the IS-
 IS Router CAPABILITY TLV to carry the TE Router IDs.
             +==============+========+===================+
             | Sub-TLV type | Length | Name              |
             +==============+========+===================+
             | 11           | 4      | IPv4 TE Router ID |
             +--------------+--------+-------------------+
             | 12           | 16     | IPv6 TE Router ID |
             +--------------+--------+-------------------+
                                Table 2
 Detailed definitions of these sub-TLVs are described in Sections
 3.4.1 and 3.4.2.

3.4. Sub-TLVs for Inter-AS Reachability Information TLV

3.4.1. Remote AS Number Sub-TLV

 The Remote AS Number sub-TLV is defined for inclusion in the Inter-AS
 Reachability Information TLV when advertising inter-AS links.  The
 Remote AS Number sub-TLV specifies the AS number of the neighboring
 AS to which the advertised link connects.
 The Remote AS Number sub-TLV is TLV type 24 (see Section 6.2) and is
 4 octets in length.  The format is as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       Remote AS Number                        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 The Remote AS Number field has 4 octets.  When only 2 octets are used
 for the AS number, the left (high-order) 2 octets MUST be set to 0.
 The Remote AS Number sub-TLV MUST be included when a router
 advertises an inter-AS TE link.

3.4.2. IPv4 Remote ASBR Identifier Sub-TLV

 The IPv4 Remote ASBR Identifier sub-TLV is defined for inclusion in
 the Inter-AS Reachability Information TLV when advertising inter-AS
 links.  The IPv4 Remote ASBR Identifier sub-TLV specifies the IPv4
 identifier of the remote ASBR to which the advertised inter-AS link
 connects.  The value advertised is selected as defined in
 Section 3.1.
 The IPv4 Remote ASBR Identifier sub-TLV is TLV type 25 (see
 Section 6.2) and is 4 octets in length.  The format of the IPv4
 Remote ASBR Identifier sub-TLV is as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Remote ASBR Identifier                     |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 The IPv4 Remote ASBR Identifier sub-TLV MUST be included if the
 neighboring ASBR has an IPv4 address.  If the neighboring ASBR does
 not have an IPv4 address, the IPv6 Remote ASBR Identifier sub-TLV
 MUST be included instead.  An IPv4 Remote ASBR Identifier sub-TLV and
 IPv6 Remote ASBR Identifier sub-TLV MAY both be present in an
 extended IS reachability TLV.

3.4.3. IPv6 Remote ASBR Identifier Sub-TLV

 The IPv6 Remote ASBR Identifier sub-TLV is defined for inclusion in
 the Inter-AS Reachability Information TLV when advertising inter-AS
 links.  The IPv6 Remote ASBR Identifier sub-TLV specifies the IPv6
 identifier of the remote ASBR to which the advertised inter-AS link
 connects.  The value advertised is selected as defined in
 Section 3.1.
 The IPv6 Remote ASBR Identifier sub-TLV is TLV type 26 (see
 Section 6.2) and is 16 octets in length.  The format of the IPv6
 Remote ASBR Identifier sub-TLV is as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Remote ASBR Identifier                     |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Remote ASBR Identifier (continued)         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Remote ASBR Identifier (continued)         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Remote ASBR Identifier (continued)         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 The IPv6 Remote ASBR Identifier sub-TLV MUST be included if the
 neighboring ASBR has an IPv6 address.  If the neighboring ASBR does
 not have an IPv6 address, the IPv4 Remote ASBR Identifier sub-TLV
 MUST be included instead.  An IPv4 Remote ASBR Identifier sub-TLV and
 IPv6 Remote ASBR Identifier sub-TLV MAY both be present in an
 extended IS reachability TLV.

3.4.4. IPv6 Local ASBR Identifier Sub-TLV

 The IPv6 Local ASBR Identifier sub-TLV is defined for inclusion in
 the Inter-AS Reachability Information TLV when advertising inter-AS
 links.  The IPv6 Local ASBR Identifier sub-TLV specifies the IPv6
 identifier of the remote ASBR to which the advertised inter-AS link
 connects.  The value advertised is selected as defined in
 Section 3.1.
 The IPv6 Local ASBR Identifier sub-TLV is TLV type 45 (see
 Section 6.2) and is 16 octets in length.  The format of the IPv6
 Local ASBR Identifier sub-TLV is as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Local ASBR Identifier                      |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Local ASBR Identifier (continued)          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Local ASBR Identifier (continued)          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                    Local ASBR Identifier (continued)          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 If the originating node does not support IPv4, the IPv6 Local ASBR
 Identifier sub-TLV MUST be present in the Inter-AS Reachability
 Information TLV.  Inter-AS Reachability Information TLVs that have a
 Router ID of 0.0.0.0 and do not have the IPv6 Local ASBR Identifier
 sub-TLV present MUST be ignored.

3.5. Sub-TLVs for IS-IS Router CAPABILITY TLV

3.5.1. IPv4 TE Router ID Sub-TLV

 The IPv4 TE Router ID sub-TLV is TLV type 11 (see Section 6.3) and is
 4 octets in length.  The format of the IPv4 TE Router ID sub-TLV is
 as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       TE Router ID                            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 The value advertised is selected as defined in Section 3.1.
 When the TE Router ID is needed to reach all routers within an entire
 IS-IS routing domain, the IS-IS Router CAPABILITY TLV MUST be
 included in its LSP.  If an ASBR supports Traffic Engineering for
 IPv4 and if the ASBR has an IPv4 TE Router ID, the IPv4 TE Router ID
 sub-TLV MUST be included.  If the ASBR does not have an IPv4 TE
 Router ID, the IPv6 TE Router ID sub-TLV MUST be included instead.
 An IPv4 TE Router ID sub-TLV and IPv6 TE Router ID sub-TLV MAY both
 be present in an IS-IS Router CAPABILITY TLV.

3.5.2. IPv6 TE Router ID Sub-TLV

 The IPv6 TE Router ID sub-TLV is TLV type 12 (see Section 6.3) and is
 16 octets in length.  The format of the IPv6 TE Router ID sub-TLV is
 as follows:
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |              Type             |             Length            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       TE Router ID                            |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       TE Router ID   (continued)              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       TE Router ID   (continued)              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                       TE Router ID   (continued)              |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 The value advertised is selected as defined in Section 3.1.
 When the TE Router ID is needed to reach all routers within an entire
 IS-IS routing domain, the IS-IS Router CAPABILITY TLV MUST be
 included in its LSP.  If an ASBR supports Traffic Engineering for
 IPv6 and if the ASBR has an IPv6 TE Router ID, the IPv6 TE Router ID
 sub-TLV MUST be included.  If the ASBR does not have an IPv6 TE
 Router ID, the IPv4 TE Router ID sub-TLV MUST be included instead.
 An IPv4 TE Router ID sub-TLV and IPv6 TE Router ID sub-TLV MAY both
 be present in an IS-IS Router CAPABILITY TLV.

4. Procedure for Inter-AS TE Links

 When TE is enabled on an inter-AS link and the link is up, the ASBR
 SHOULD advertise this link using the normal procedures for [RFC5305].
 When either the link is down or TE is disabled on the link, the ASBR
 SHOULD withdraw the advertisement.  When there are changes to the TE
 parameters for the link (for example, when the available bandwidth
 changes), the ASBR SHOULD re-advertise the link but MUST take
 precautions against excessive re-advertisements.
 Hellos MUST NOT be exchanged over the inter-AS link, and
 consequently, an IS-IS adjacency MUST NOT be formed.
 The information advertised comes from the ASBR's knowledge of the TE
 capabilities of the link, the ASBR's knowledge of the current status
 and usage of the link, and configuration at the ASBR of the Remote AS
 Number and remote ASBR TE Router ID.
 Legacy routers receiving an advertisement for an inter-AS TE link are
 able to ignore it because they do not know the TLV and sub-TLVs that
 are defined in Section 3 of this document.  They will continue to
 flood the LSP but will not attempt to use the information received.
 In the current operation of IS-IS TE, the LSRs at each end of a TE
 link emit LSPs describing the link.  The databases in the LSRs then
 have two entries (one locally generated, the other from the peer)
 that describe the different 'directions' of the link.  This enables
 Constrained Shortest Path First (CSPF) to do a two-way check on the
 link when performing path computation and eliminate it from
 consideration unless both directions of the link satisfy the required
 constraints.
 In the case we are considering here (i.e., of a TE link to another
 AS), there is, by definition, no IGP peering and hence no
 bidirectional TE link information.  In order for the CSPF route
 computation entity to include the link as a candidate path, we have
 to find a way to get LSPs describing its (bidirectional) TE
 properties into the TE database.
 This is achieved by the ASBR advertising, internally to its AS,
 information about both directions of the TE link to the next AS.  The
 ASBR will normally generate an LSP describing its own side of a link;
 here, we have it 'proxy' for the ASBR at the edge of the other AS and
 generate an additional LSP that describes that device's 'view' of the
 link.
 Only some essential TE information for the link needs to be
 advertised, i.e., the Interface Address, the Remote AS Number, and
 the Remote ASBR Identifier of an inter-AS TE link.
 Routers or PCEs that are capable of processing advertisements of
 inter-AS TE links SHOULD NOT use such links to compute paths that
 exit an AS to a remote ASBR and then immediately re-enter the AS
 through another TE link.  Such paths would constitute extremely rare
 occurrences and SHOULD NOT be allowed except as the result of
 specific policy configurations at the router or PCE computing the
 path.

4.1. Origin of Proxied TE Information

 Section 4 describes how an ASBR advertises TE link information as a
 proxy for its neighbor ASBR but does not describe where this
 information comes from.
 Although the source of the information described in Section 4 is
 outside the scope of this document, it is possible that it will be a
 configuration requirement at the ASBR, as are other local properties
 of the TE link.  Further, where BGP is used to exchange IP routing
 information between the ASBRs, a certain amount of additional local
 configuration about the link and the remote ASBR is likely to be
 available.
 We note further that it is possible, and may be operationally
 advantageous, to obtain some of the required configuration
 information from BGP.  Whether and how to utilize these possibilities
 is an implementation matter.

5. Security Considerations

 The protocol extensions defined in this document are relatively minor
 and can be secured within the AS in which they are used by the
 existing IS-IS security mechanisms (e.g., using the cleartext
 passwords or Hashed Message Authentication Codes, which are defined
 in [RFC1195], [RFC5304], and [RFC5310] separately).
 There is no exchange of information between ASes and no change to the
 IS-IS security relationship between the ASes.  In particular, since
 no IS-IS adjacency is formed on the inter-AS links, there is no
 requirement for IS-IS security between the ASes.
 Some of the information included in these advertisements (e.g., the
 Remote AS Number and the Remote ASBR Identifier) is obtained manually
 from a neighboring administration as part of a commercial
 relationship.  The source and content of this information should be
 carefully checked before it is entered as configuration information
 at the ASBR responsible for advertising the inter-AS TE links.
 It is worth noting that, in the scenario we are considering, a Border
 Gateway Protocol (BGP) peering may exist between the two ASBRs and
 that this could be used to detect inconsistencies in configuration
 (e.g., the administration that originally supplied the information
 may provide incorrect information, or some manual misconfigurations
 or mistakes may be made by the operators).  For example, if a
 different Remote AS Number is received in a BGP OPEN [RFC4271] from
 that locally configured to IS-IS TE, as we describe here, then local
 policy SHOULD be applied to determine whether to alert the operator
 to a potential misconfiguration or to suppress the IS-IS
 advertisement of the inter-AS TE link.  Advertisement of incorrect
 information could result in an inter-AS TE LSP that traverses an
 unintended AS.  Note further that, if BGP is used to exchange TE
 information as described in Section 4.1, the inter-AS BGP session
 SHOULD be secured using mechanisms such as described in [RFC5925] to
 provide authentication and integrity checks.
 For a discussion of general security considerations for IS-IS, see
 [RFC5304].

6. IANA Considerations

6.1. Inter-AS Reachability Information TLV

 IANA has registered the following IS-IS TLV type, described in
 Section 3.1, in the "IS-IS Top-Level TLV Codepoints" registry:
    +=======+==============+=====+=====+=====+=======+===========+
    | Value | Name         | IIH | LSP | SNP | Purge | Reference |
    +=======+==============+=====+=====+=====+=======+===========+
    | 141   | Inter-AS     | n   | y   | n   | n     | RFC 9346  |
    |       | Reachability |     |     |     |       |           |
    |       | Information  |     |     |     |       |           |
    +-------+--------------+-----+-----+-----+-------+-----------+
                               Table 3

6.2. Sub-TLVs for the Inter-AS Reachability Information TLV

 IANA has registered the following sub-TLV types of top-level TLV 141
 (see Section 6.1) in the "IS-IS Sub-TLVs for TLVs Advertising
 Neighbor Information" registry.  These sub-TLVs are described in
 Sections 3.4.1, 3.4.2, 3.4.3, and 3.4.4.
 +=======+=============+====+====+====+=====+=====+=====+===========+
 | Value | Description | 22 | 23 | 25 | 141 | 222 | 223 | Reference |
 +=======+=============+====+====+====+=====+=====+=====+===========+
 | 24    | Remote AS   | n  | n  | n  | y   | n   | n   | RFC 9346  |
 |       | Number      |    |    |    |     |     |     |           |
 +-------+-------------+----+----+----+-----+-----+-----+-----------+
 | 25    | IPv4 Remote | n  | n  | n  | y   | n   | n   | RFC 9346  |
 |       | ASBR        |    |    |    |     |     |     |           |
 |       | Identifier  |    |    |    |     |     |     |           |
 +-------+-------------+----+----+----+-----+-----+-----+-----------+
 | 26    | IPv6 Remote | n  | n  | n  | y   | n   | n   | RFC 9346  |
 |       | ASBR        |    |    |    |     |     |     |           |
 |       | Identifier  |    |    |    |     |     |     |           |
 +-------+-------------+----+----+----+-----+-----+-----+-----------+
 | 45    | IPv6 Local  | n  | n  | n  | y   | n   | n   | RFC 9346  |
 |       | ASBR        |    |    |    |     |     |     |           |
 |       | Identifier  |    |    |    |     |     |     |           |
 +-------+-------------+----+----+----+-----+-----+-----+-----------+
                               Table 4
 As described in Section 3.1, the sub-TLVs that are defined in
 [RFC5305], [RFC6119], and other documents for describing the TE
 properties of a TE link are applicable to describe an inter-AS TE
 link and MAY be included in the Inter-AS Reachability Information TLV
 when adverting inter-AS TE links.

6.3. Sub-TLVs for the IS-IS Router CAPABILITY TLV

 IANA has registered the following sub-TLV types of top-level TLV 242
 (see [RFC7981]) in the "IS-IS Sub-TLVs for IS-IS Router CAPABILITY
 TLV" registry.  These sub-TLVs are described in Sections 3.4.1 and
 3.4.2.
               +======+===================+===========+
               | Type | Description       | Reference |
               +======+===================+===========+
               | 11   | IPv4 TE Router ID | RFC 9346  |
               +------+-------------------+-----------+
               | 12   | IPv6 TE Router ID | RFC 9346  |
               +------+-------------------+-----------+
                               Table 5

7. References

7.1. Normative References

 [RFC1195]  Callon, R., "Use of OSI IS-IS for routing in TCP/IP and
            dual environments", RFC 1195, DOI 10.17487/RFC1195,
            December 1990, <https://www.rfc-editor.org/info/rfc1195>.
 [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119,
            DOI 10.17487/RFC2119, March 1997,
            <https://www.rfc-editor.org/info/rfc2119>.
 [RFC4271]  Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
            Border Gateway Protocol 4 (BGP-4)", RFC 4271,
            DOI 10.17487/RFC4271, January 2006,
            <https://www.rfc-editor.org/info/rfc4271>.
 [RFC5305]  Li, T. and H. Smit, "IS-IS Extensions for Traffic
            Engineering", RFC 5305, DOI 10.17487/RFC5305, October
            2008, <https://www.rfc-editor.org/info/rfc5305>.
 [RFC5308]  Hopps, C., "Routing IPv6 with IS-IS", RFC 5308,
            DOI 10.17487/RFC5308, October 2008,
            <https://www.rfc-editor.org/info/rfc5308>.
 [RFC5925]  Touch, J., Mankin, A., and R. Bonica, "The TCP
            Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
            June 2010, <https://www.rfc-editor.org/info/rfc5925>.
 [RFC6119]  Harrison, J., Berger, J., and M. Bartlett, "IPv6 Traffic
            Engineering in IS-IS", RFC 6119, DOI 10.17487/RFC6119,
            February 2011, <https://www.rfc-editor.org/info/rfc6119>.
 [RFC7981]  Ginsberg, L., Previdi, S., and M. Chen, "IS-IS Extensions
            for Advertising Router Information", RFC 7981,
            DOI 10.17487/RFC7981, October 2016,
            <https://www.rfc-editor.org/info/rfc7981>.
 [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
            2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
            May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [RFC3209]  Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
            and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
            Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
            <https://www.rfc-editor.org/info/rfc3209>.
 [RFC4216]  Zhang, R., Ed. and J.-P. Vasseur, Ed., "MPLS Inter-
            Autonomous System (AS) Traffic Engineering (TE)
            Requirements", RFC 4216, DOI 10.17487/RFC4216, November
            2005, <https://www.rfc-editor.org/info/rfc4216>.
 [RFC4655]  Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
            Computation Element (PCE)-Based Architecture", RFC 4655,
            DOI 10.17487/RFC4655, August 2006,
            <https://www.rfc-editor.org/info/rfc4655>.
 [RFC5152]  Vasseur, JP., Ed., Ayyangar, A., Ed., and R. Zhang, "A
            Per-Domain Path Computation Method for Establishing Inter-
            Domain Traffic Engineering (TE) Label Switched Paths
            (LSPs)", RFC 5152, DOI 10.17487/RFC5152, February 2008,
            <https://www.rfc-editor.org/info/rfc5152>.
 [RFC5304]  Li, T. and R. Atkinson, "IS-IS Cryptographic
            Authentication", RFC 5304, DOI 10.17487/RFC5304, October
            2008, <https://www.rfc-editor.org/info/rfc5304>.
 [RFC5307]  Kompella, K., Ed. and Y. Rekhter, Ed., "IS-IS Extensions
            in Support of Generalized Multi-Protocol Label Switching
            (GMPLS)", RFC 5307, DOI 10.17487/RFC5307, October 2008,
            <https://www.rfc-editor.org/info/rfc5307>.
 [RFC5310]  Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R.,
            and M. Fanto, "IS-IS Generic Cryptographic
            Authentication", RFC 5310, DOI 10.17487/RFC5310, February
            2009, <https://www.rfc-editor.org/info/rfc5310>.
 [RFC5316]  Chen, M., Zhang, R., and X. Duan, "ISIS Extensions in
            Support of Inter-Autonomous System (AS) MPLS and GMPLS
            Traffic Engineering", RFC 5316, DOI 10.17487/RFC5316,
            December 2008, <https://www.rfc-editor.org/info/rfc5316>.
 [RFC5441]  Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le Roux,
            "A Backward-Recursive PCE-Based Computation (BRPC)
            Procedure to Compute Shortest Constrained Inter-Domain
            Traffic Engineering Label Switched Paths", RFC 5441,
            DOI 10.17487/RFC5441, April 2009,
            <https://www.rfc-editor.org/info/rfc5441>.
 [RFC6823]  Ginsberg, L., Previdi, S., and M. Shand, "Advertising
            Generic Information in IS-IS", RFC 6823,
            DOI 10.17487/RFC6823, December 2012,
            <https://www.rfc-editor.org/info/rfc6823>.

Appendix A. Changes to RFC 5316

 The following is a summary of the substantive changes this document
 makes to RFC 5316.  Some editorial changes were also made.
 RFC 5316 only allowed a 32-bit Router ID in the fixed header of TLV
 141.  This is problematic in an IPv6-only deployment where an IPv4
 address may not be available.  This document specifies:
 1.  The Router ID should be identical to the value advertised in the
     Traffic Engineering router ID TLV (134) if available.
 2.  If no Traffic Engineering Router ID is assigned, the Router ID
     should be identical to an IP Interface Address [RFC1195]
     advertised by the originating IS.
 3.  If the originating node does not support IPv4, then the reserved
     value 0.0.0.0 must be used in the Router ID field and the IPv6
     Local ASBR Identifier sub-TLV must be present in the TLV.

Acknowledgements

 In the previous version of this document [RFC5316], the authors
 thanked Adrian Farrel, Jean-Louis Le Roux, Christian Hopps, and
 Hannes Gredler for their review and comments.

Authors' Addresses

 Mach(Guoyi) Chen
 Huawei
 Email: mach.chen@huawei.com
 Les Ginsberg
 Cisco Systems
 Email: ginsberg@cisco.com
 Stefano Previdi
 Huawei Technologies
 Italy
 Email: stefano@previdi.net
 Xiaodong Duan
 China Mobile
 Email: duanxiaodong@chinamobile.com
/home/gen.uk/domains/wiki.gen.uk/public_html/data/pages/rfc/rfc9346.txt · Last modified: 2023/02/02 03:17 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki