GENWiki

Premier IT Outsourcing and Support Services within the UK

User Tools

Site Tools


rfc:rfc9399



Internet Engineering Task Force (IETF) S. Santesson Request for Comments: 9399 IDsec Solutions Obsoletes: 3709, 6170 R. Housley Category: Standards Track Vigil Security ISSN: 2070-1721 T. Freeman

                                                   Amazon Web Services
                                                          L. Rosenthol
                                                                 Adobe
                                                              May 2023
    Internet X.509 Public Key Infrastructure: Logotypes in X.509
                            Certificates

Abstract

 This document specifies a certificate extension for including
 logotypes in public key certificates and attribute certificates.
 This document obsoletes RFCs 3709 and 6170.

Status of This Memo

 This is an Internet Standards Track document.
 This document is a product of the Internet Engineering Task Force
 (IETF).  It represents the consensus of the IETF community.  It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG).  Further information on
 Internet Standards is available in Section 2 of RFC 7841.
 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 https://www.rfc-editor.org/info/rfc9399.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors.  All rights reserved.
 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document.  Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.  Code Components extracted from this document must
 include Revised BSD License text as described in Section 4.e of the
 Trust Legal Provisions and are provided without warranty as described
 in the Revised BSD License.

Table of Contents

 1.  Introduction
   1.1.  Certificate-Based Identification
   1.2.  Selection of Certificates
   1.3.  Combination of Verification Techniques
   1.4.  Requirements Language
 2.  Different Types of Logotypes in Certificates
 3.  Logotype Data
 4.  Logotype Certificate Extension
   4.1.  Extension Format
   4.2.  Conventions for LogotypeImageInfo
   4.3.  Embedded Images
   4.4.  Other Logotypes
     4.4.1.  Loyalty Logotype
     4.4.2.  Certificate Background Logotype
     4.4.3.  Certificate Image Logotype
 5.  Type of Certificates
 6.  Use in Clients
 7.  Image Formats
 8.  Audio Formats
 9.  Security Considerations
 10. Privacy Considerations
 11. IANA Considerations
 12. References
   12.1.  Normative References
   12.2.  Informative References
 Appendix A.  ASN.1 Modules
   A.1.  ASN.1 Modules with 1988 Syntax
   A.2.  ASN.1 Module with 2002 Syntax
 Appendix B.  Examples
   B.1.  Example from RFC 3709
   B.2.  Issuer Organization Logotype Example
   B.3.  Embedded Image Example
   B.4.  Embedded Certificate Image Example
   B.5.  Full Certificate Example
 Appendix C.  Changes since RFCs 3709 and 6170
 Acknowledgments
 Authors' Addresses

1. Introduction

 This specification supplements [RFC5280], which profiles public key
 certificates and certificate revocation lists (CRLs) for use in the
 Internet, and it supplements [RFC5755], which profiles attribute
 certificates for use in the Internet.
 This document obsoletes [RFC3709] and [RFC6170].  Appendix C provides
 a summary of the changes since the publication of [RFC3709] and
 [RFC6170].
 The basic function of a certificate is to bind a public key to the
 identity of an entity (the subject).  From a strictly technical
 viewpoint, this goal could be achieved by signing the identity of the
 subject together with its public key.  However, the art of Public Key
 Infrastructure (PKI) has developed certificates far beyond this
 functionality in order to meet the needs of modern global networks
 and heterogeneous information and operational technology structures.
 Certificate users must be able to determine certificate policies,
 appropriate key usage, assurance level, and name form constraints.
 Before a relying party can make an informed decision whether a
 particular certificate is trustworthy and relevant for its intended
 usage, a certificate may be examined from several different
 perspectives.
 Systematic processing is necessary to determine whether a particular
 certificate meets the predefined prerequisites for an intended usage.
 Much of the information contained in certificates is appropriate and
 effective for machine processing; however, this information is not
 suitable for a corresponding human trust and recognition process.
 Humans prefer to structure information into categories and symbols.
 Most humans associate complex structures of reality with easily
 recognizable logotypes and marks.  Humans tend to trust things that
 they recognize from previous experiences.  Humans may examine
 information to confirm their initial reaction.  Very few consumers
 actually read all terms and conditions they agree to in accepting a
 service; instead, they commonly act on trust derived from previous
 experience and recognition.
 A big part of this process is branding.  Service providers and
 product vendors invest a lot of money and resources into creating a
 strong relation between positive user experiences and easily
 recognizable trademarks, servicemarks, and logotypes.
 Branding is also pervasive in identification instruments, including
 identification cards, passports, driver's licenses, credit cards,
 gasoline cards, and loyalty cards.  Identification instruments are
 intended to identify the holder as a particular person or as a member
 of the community.  The community may represent the subscribers of a
 service or any other group.  Identification instruments, in physical
 form, commonly use logotypes and symbols, solely to enhance human
 recognition and trust in the identification instrument itself.  They
 may also include a registered trademark to allow legal recourse for
 unauthorized duplication.
 Since certificates play an equivalent role in electronic exchanges,
 we examine the inclusion of logotypes in certificates.  We consider
 certificate-based identification and certificate selection.

1.1. Certificate-Based Identification

 The need for human recognition depends on the manner in which
 certificates are used and whether certificates need to be visible to
 human users.  If certificates are to be used in open environments and
 in applications that bring the user in conscious contact with the
 result of a certificate-based identification process, then human
 recognition is highly relevant and may be a necessity.
 Examples of such applications include:
  • Web server identification where a user identifies the owner of the

website.

  • Peer email exchange in business-to-business (B2B), business-to-

consumer (B2C), and private communications.

  • Exchange of medical records and system for medical prescriptions.
  • Unstructured e-business applications (i.e., non-EDI applications).
  • Wireless client authenticating to a service provider.
 Most applications provide the human user with an opportunity to view
 the results of a successful certificate-based identification process.
 When the user takes the steps necessary to view these results, the
 user is presented with a view of a certificate.  This solution has
 two major problems.  First, the function to view a certificate is
 often rather hard to find for a non-technical user.  Second, the
 presentation of the certificate is too technical and is not user
 friendly.  It contains no graphic symbols or logotypes to enhance
 human recognition.
 Many investigations have shown that users of today's applications do
 not take the steps necessary to view certificates.  This could be due
 to poor user interfaces.  Further, many applications are structured
 to hide certificates from users.  The application designers do not
 want to expose certificates to users at all.

1.2. Selection of Certificates

 One situation where software applications must expose human users to
 certificates is when the user must select a single certificate from a
 portfolio of certificates.  In some cases, the software application
 can use information within the certificates to filter the list for
 suitability; however, the user must be queried if more than one
 certificate is suitable.  The human user must select one of them.
 This situation is comparable to a person selecting a suitable plastic
 card from their wallet.  In this situation, substantial assistance is
 provided by card color, location, and branding.
 In order to provide similar support for certificate selection, the
 users need tools to easily recognize and distinguish certificates.
 Introduction of logotypes into certificates provides the necessary
 graphic.

1.3. Combination of Verification Techniques

 The use of logotypes will, in many cases, affect the user's decision
 to trust and use a certificate.  It is therefore important that there
 be a distinct and clear architectural and functional distinction
 between the processes and objectives of the automated certificate
 verification and human recognition.
 Since logotypes are only aimed for human interpretation and contain
 data that is inappropriate for computer-based verification schemes,
 the logotype certificate extension MUST NOT be an active component in
 automated certification path validation, as specified in Section 6 of
 [RFC5280].
 Automated certification path verification determines whether the end
 entity certificate can be verified according to defined policy.  The
 algorithm for this verification is specified in [RFC5280].
 The automated processing provides assurance that the certificate is
 valid.  It does not indicate whether the subject is entitled to any
 particular information or whether the subject ought to be trusted to
 perform a particular service.  These are authorization decisions.
 Automatic processing will make some authorization decisions, but
 others, depending on the application context, involve the human user.
 In some situations, where automated procedures have failed to
 establish the suitability of the certificate to the task, the human
 user is the final arbitrator of the post certificate verification
 authorization decisions.  In the end, the human will decide whether
 or not to accept an executable email attachment, to release personal
 information, or to follow the instructions displayed by a web
 browser.  This decision will often be based on recognition and
 previous experience.
 The distinction between systematic processing and human processing is
 rather straightforward.  They can be complementary.  While the
 systematic process is focused on certification path construction and
 verification, the human acceptance process is focused on recognition
 and related previous experience.
 There are some situations where systematic processing and human
 processing interfere with each other.  These issues are discussed in
 the Section 9.

1.4. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Different Types of Logotypes in Certificates

 This specification defines the inclusion of three standard logotype
 types:
  • community logotype
  • issuer organization logotype
  • subject organization logotype
 The community logotype is the general mark for a community.  It
 identifies a service concept for entity identification and
 certificate issuance.  Many issuers may use a community logotype to
 co-brand with a global community in order to gain global recognition
 of its local service provision.  This type of community branding is
 very common in the credit card business, where local independent card
 issuers include a globally recognized brand (such as Visa and
 Mastercard).  Certificate issuers may include more than one community
 logotype to indicate participation in more than one global community.
 The issuer organization logotype is a logotype representing the
 organization identified as part of the issuer name in the
 certificate.
 The subject organization logotype is a logotype representing the
 organization identified in the subject name in the certificate.
 In addition to the standard logotype types, this specification
 accommodates inclusion of other logotype types where each class of
 logotype is defined by an object identifier.  The object identifier
 can be either locally defined or an identifier defined in Section 4.4
 of this document.

3. Logotype Data

 This specification defines two types of logotype data: image data and
 audio data.  Implementations MUST support image data; however,
 support for audio data is OPTIONAL.
 Image and audio data for logotypes can be provided by reference by
 including a URI that identifies the location to the logotype data and
 a one-way hash of the referenced data in the certificate.  The
 privacy-related properties for remote logotype data depend on four
 parties: the certificate relying parties that use the information in
 the certificate extension to fetch the logotype data, the certificate
 issuers that populate the certificate extension, certificate
 subscribers that request certificates that include the certificate
 extension, and server operators that provide the logotype data.
 Alternatively, embedding the logotype data in the certificate with
 direct addressing (as defined in Section 4.3) provides improved
 privacy properties and depends upon fewer parties.  However, this
 approach can significantly increase the size of the certificate.
 Several image objects, representing the same visual content in
 different formats, sizes, and color palates, may represent each
 logotype image.  At least one of the image objects representing a
 logotype SHOULD contain an image with a width between 60 pixels and
 200 pixels and a height between 45 pixels and 150 pixels.
 Several instances of audio data may further represent the same audio
 sequence in different formats, resolutions, and languages.  At least
 one of the audio objects representing a logotype SHOULD provide text-
 based audio data suitable for processing by text-to-speech software.
 A typical use of text-based audio data is inclusion in web
 applications where the audio text is placed as the "alt" attribute
 value of an HTML image (img) element, and the language value obtained
 from LogotypeAudioInfo is included as the "lang" attribute of that
 image.
 If a logotype of a certain type (as defined in Section 2) is
 represented by more than one image object, then each image object
 MUST contain variants of roughly the same visual content.  Likewise,
 if a logotype of a certain type is represented by more than one audio
 object, then the audio objects MUST contain variants of the same
 audio information.  A spoken message in different languages is
 considered a variation of the same audio information.  When more than
 one image object or more than one audio object for the same logotype
 type is included in the certificate, the certificate issuer is
 responsible for ensuring that the objects contain roughly the same
 content.  Compliant applications MUST NOT display more than one of
 the image objects and MUST NOT play more than one of the audio
 objects for any logotype type (see Section 2) at the same time.
 A client MAY simultaneously display multiple logotypes of different
 logotype types.  For example, it may display one subject organization
 logotype while also displaying a community logotype, but it MUST NOT
 display multiple image variants of the same community logotype.
 Each logotype present in a certificate MUST be represented by at
 least one image data object.
 Client applications SHOULD enhance processing and off-line
 functionality by caching logotype data.

4. Logotype Certificate Extension

 This section specifies the syntax and semantics of the logotype
 certificate extension.

4.1. Extension Format

 The logotype certificate extension MAY be included in public key
 certificates [RFC5280] or attribute certificates [RFC5755].  The
 logotype certificate extension MUST be identified by the following
 object identifier:
    id-pe-logotype  OBJECT IDENTIFIER  ::=
       { iso(1) identified-organization(3) dod(6) internet(1)
         security(5) mechanisms(5) pkix(7) id-pe(1) 12 }
 This extension MUST NOT be marked critical.
 Logotype data may be referenced through either direct or indirect
 addressing.  Client applications SHOULD support both direct and
 indirect addressing.  Certificate issuing applications MUST support
 direct addressing, and certificate issuing applications SHOULD
 support indirect addressing.
 The direct addressing includes information about each logotype in the
 certificate, and URIs point to the image and audio data object.
 Multiple URIs MAY be included for locations for obtaining the same
 logotype object.  Multiple hash values MAY be included, each computed
 with a different one-way hash function.  Direct addressing supports
 cases where just one or a few alternative images and audio objects
 are referenced.
 The indirect addressing includes one or more references to an
 external hashed data structure that contains information on the type,
 content, and location of each image and audio object.  Indirect
 addressing supports cases where each logotype is represented by many
 alternative audio or image objects.
 Both direct and indirect addressing accommodate alternative URIs to
 obtain exactly the same logotype data.  This opportunity for
 replication is intended to improve availability.  Therefore, if a
 client is unable to fetch the item from one URI, the client SHOULD
 try another URI in the sequence.  All direct addressing URIs SHOULD
 use the HTTPS scheme (https://...), the HTTP scheme (http://...), or
 the DATA scheme (data://...) [RFC3986].  However, the "data" URI
 scheme MUST NOT be used with the indirect addressing.  Clients MUST
 support retrieval of the referenced LogotypeData with HTTP [RFC9110],
 HTTP with TLS [RFC8446], or subsequent versions of these protocols.
 Client applications SHOULD also support the "data" URI scheme
 [RFC2397] for direct addressing with embedded logotype data within
 the extension.
 Note that the HTTPS scheme (https://...) requires the validation of
 other certificates to establish a secure connection.  For this
 reason, the HTTP scheme (http://...) may be easier for a client to
 handle.  Also, the hash of the logotype data provides data integrity.
 The logotype certificate extension MUST have the following syntax:
 LogotypeExtn ::= SEQUENCE {
    communityLogos  [0] EXPLICIT SEQUENCE OF LogotypeInfo OPTIONAL,
    issuerLogo      [1] EXPLICIT LogotypeInfo OPTIONAL,
    subjectLogo     [2] EXPLICIT LogotypeInfo OPTIONAL,
    otherLogos      [3] EXPLICIT SEQUENCE OF OtherLogotypeInfo
                           OPTIONAL }
 LogotypeInfo ::= CHOICE {
    direct          [0] LogotypeData,
    indirect        [1] LogotypeReference }
 LogotypeData ::= SEQUENCE {
    image           SEQUENCE OF LogotypeImage OPTIONAL,
    audio           [1] SEQUENCE OF LogotypeAudio OPTIONAL }
 LogotypeImage ::= SEQUENCE {
    imageDetails    LogotypeDetails,
    imageInfo       LogotypeImageInfo OPTIONAL }
 LogotypeAudio ::= SEQUENCE {
    audioDetails    LogotypeDetails,
    audioInfo       LogotypeAudioInfo OPTIONAL }
 LogotypeDetails ::= SEQUENCE {
    mediaType       IA5String, -- Media type name and optional
                               -- parameters
    logotypeHash    SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
    logotypeURI     SEQUENCE SIZE (1..MAX) OF IA5String }
 LogotypeImageInfo ::= SEQUENCE {
    type            [0] LogotypeImageType DEFAULT color,
    fileSize        INTEGER,  -- In octets, 0=unspecified
    xSize           INTEGER,  -- Horizontal size in pixels
    ySize           INTEGER,  -- Vertical size in pixels
    resolution      LogotypeImageResolution OPTIONAL,
    language        [4] IA5String OPTIONAL }  -- RFC 5646 Language Tag
 LogotypeImageType ::= INTEGER { grayScale(0), color(1) }
 LogotypeImageResolution ::= CHOICE {
    numBits         [1] INTEGER,   -- Resolution in bits per pixel
    tableSize       [2] INTEGER }  -- Number of colors or grey tones
 LogotypeAudioInfo ::= SEQUENCE {
    fileSize        INTEGER,  -- In octets, 0=unspecified
    playTime        INTEGER,  -- In milliseconds, 0=unspecified
    channels        INTEGER,  -- 0=unspecified,
                              -- 1=mono, 2=stereo, 4=quad
    sampleRate      [3] INTEGER OPTIONAL,  -- Samples per second
    language        [4] IA5String OPTIONAL }  -- RFC 5646 Language Tag
 OtherLogotypeInfo ::= SEQUENCE {
    logotypeType    OBJECT IDENTIFIER,
    info            LogotypeInfo }
 LogotypeReference ::= SEQUENCE {
    refStructHash   SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
    refStructURI    SEQUENCE SIZE (1..MAX) OF IA5String }
                     -- Places to get the same LogotypeData
                     -- image or audio object
 HashAlgAndValue ::= SEQUENCE {
    hashAlg         AlgorithmIdentifier,
    hashValue       OCTET STRING }
 When using indirect addressing, the URI (refStructURI) pointing to
 the external data structure MUST point to a resource that contains
 the DER-encoded data with the syntax LogotypeData.
 At least one of the optional elements in the LogotypeExtn structure
 MUST be present.
 When using direct addressing, at least one of the optional elements
 in the LogotypeData structure MUST be present.
 The LogotypeReference and LogotypeDetails structures explicitly
 identify one or more one-way hash functions employed to authenticate
 referenced image or audio objects.  Certification Authorities (CAs)
 MUST include a hash value for each referenced object, calculated on
 the whole object.  CAs MUST use the one-way hash function that is
 associated with the certificate signature to compute one hash value,
 and CAs MAY include other hash values.  Clients MUST compute a one-
 way hash value using one of the identified functions, and clients
 MUST discard the logotype data if the computed hash value does not
 match the hash value in the certificate extension.
 A media type is used to specify the format of the image or audio
 object containing the logotype data.  The mediaType field MUST
 contain a string that is constructed according to the ABNF [RFC5234]
 rule for media-type provided in Section 8.3.1 of [RFC9110].  Media
 types MAY include parameters.  To keep the mediaType field as small
 as possible, optional whitespace SHOULD NOT be included.
 Image format requirements are specified in Section 7, and audio
 format requirements are specified in Section 8.
 When language is specified, the language tag MUST use the syntax in
 [RFC5646].
 The following logotype types are defined in this specification:
  • community logotype: If communityLogos is present, the logotypes

MUST represent one or more communities with which the certificate

    issuer is affiliated.  The communityLogos MAY be present in an end
    entity certificate, a CA certificate, or an attribute certificate.
    The communityLogos contains a sequence of community logotypes,
    each representing a different community.  If more than one
    community logotype is present, they MUST be placed in order of
    preferred appearance.  Some clients MAY choose to display a subset
    of the present community logos; therefore, the placement within
    the sequence aids the client selection.  The most preferred
    logotype MUST be first in the sequence, and the least preferred
    logotype MUST be last in the sequence.
  • issuer organization logotype: If issuerLogo is present, the

logotype MUST represent the issuer's organization. The logotype

    MUST be consistent with, and require the presence of, an
    organization name stored in the organization attribute in the
    issuer field (for either a public key certificate or attribute
    certificate).  The issuerLogo MAY be present in an end entity
    certificate, a CA certificate, or an attribute certificate.
  • subject organization logotype: If subjectLogo is present, the

logotype MUST represent the subject's organization. The logotype

    MUST be consistent with, and require the presence of, an
    organization name stored in the organization attribute in the
    subject field (for either a public key certificate or attribute
    certificate).  The subjectLogo MAY be present in an end entity
    certificate, a CA certificate, or an attribute certificate.
 The relationship between the subject organization and the subject
 organization logotype, and the relationship between the issuer and
 either the issuer organization logotype or the community logotype,
 are relationships asserted by the issuer.  The policies and practices
 employed by the issuer that check subject organization logotypes or
 claims about its issuer and community logotypes are outside the scope
 of this document.

4.2. Conventions for LogotypeImageInfo

 When the optional LogotypeImageInfo is included with a logotype
 image, the parameters MUST be used with the following semantics and
 restrictions.
 The xSize and ySize fields represent the recommended display size for
 the logotype image.  When a value of 0 (zero) is present, no
 recommended display size is specified.  When non-zero values are
 present and these values differ from corresponding size values in the
 referenced image object, then the referenced image SHOULD be scaled
 to fit within the size parameters of LogotypeImageInfo while
 preserving the x and y ratio.  Dithering may produce a more
 appropriate image than linear scaling.
 The resolution field is redundant for all logotype image formats
 listed in Section 7.  The optional resolution field SHOULD be omitted
 when the image format already contains this information.

4.3. Embedded Images

 If the logotype image is provided through direct addressing, then the
 image MAY be stored within the logotype certificate extension using
 the "data" scheme [RFC2397].  The syntax of the "data" URI scheme is
 shown below, which incorporates Errata ID 2045 and uses modern ABNF
 [RFC5234]:
      dataurl    = "data:" [ media-type ] [ ";base64" ] "," data
      data       = *(reserved / unreserved / escaped)
      reserved   = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+" /
                   "$" / ","
      unreserved = alphanum / mark
      alphanum   = ALPHA / DIGIT
      mark       = "-" / "_" / "." / "!" / "~" / "*" / "'" / "(" / ")"
      escaped    = "%" hex hex
      hex        = HEXDIG / "a" / "b" / "c" / "d" / "e" / "f"
 where media-type is defined in Section 8.3.1 of [RFC9110] and ALPHA,
 DIGIT, and HEXDIG are defined in Appendix B.1 of [RFC5234].
 When including the image data in the logotype certificate extension
 using the "data" URI scheme, the following conventions apply:
  • The value of mediaType in LogotypeDetails MUST be identical to the

media type value in the "data" URL.

  • The hash of the image MUST be included in logotypeHash and MUST be

calculated over the same data as it would have been if the image

    had been referenced through a link to an external resource.
    |  NOTE: As the "data" URI scheme is processed as a data source
    |  rather than as a URL, the image data is typically not limited
    |  by any URL length limit settings that otherwise apply to URLs
    |  in general.
    |  
    |  NOTE: Implementations need to be cautious about the size of
    |  images included in a certificate in order to ensure that the
    |  size of the certificate does not prevent the certificate from
    |  being used as intended.

4.4. Other Logotypes

 Logotypes identified by otherLogos (as defined in Section 4.1) can be
 used to enhance the display of logotypes and marks that represent
 partners, products, services, or any other characteristic associated
 with the certificate or its intended application environment when the
 standard logotype types are insufficient.
 The conditions and contexts of the intended use of these logotypes
 are defined at the discretion of the local client application.
 Three other logotype types are defined in the follow subsections.

4.4.1. Loyalty Logotype

 When a loyalty logotype appears in otherLogos, it MUST be identified
 by the id-logo-loyalty object identifier.
    id-logo OBJECT IDENTIFIER ::= { id-pkix 20 }
    id-logo-loyalty    OBJECT IDENTIFIER ::= { id-logo 1 }
 A loyalty logotype, if present, MUST contain a logotype associated
 with a loyalty program related to the certificate or its use.  The
 relation between the certificate and the identified loyalty program
 is beyond the scope of this document.  The logotype certificate
 extension MAY contain more than one loyalty logotype.
 If more than one loyalty logotype is present, they MUST be placed in
 order of preferred appearance.  Some clients MAY choose to display a
 subset of the present loyalty logotype data; therefore, the placement
 within the sequence aids the client selection.  The most preferred
 loyalty logotype data MUST be first in the sequence, and the least
 preferred loyalty logotype data MUST be last in the sequence.

4.4.2. Certificate Background Logotype

 When a certificate background logotype appears in otherLogos, it MUST
 be identified by the id-logo-background object identifier.
    id-logo-background OBJECT IDENTIFIER ::= { id-logo 2 }
 The certificate background logotype, if present, MUST contain a
 graphical image intended as a background image for the certificate
 and/or a general audio sequence for the certificate.  The background
 image MUST allow black text to be clearly read when placed on top of
 the background image.  The logotype certificate extension MUST NOT
 contain more than one certificate background logotype.

4.4.3. Certificate Image Logotype

 When a certificate image logotype appears in otherLogos, it MUST be
 identified by the id-logo-certImage object identifier.
    id-logo-certImage OBJECT IDENTIFIER ::= { id-logo 3 }
 The certificate image logotype, if present, aids human interpretation
 of a certificate by providing meaningful visual information to the
 user interface (UI).  The logotype certificate extension MUST NOT
 contain more than one certificate image logotype.
 Typical situations when a human needs to examine the visual
 representation of a certificate are:
  • A person establishes a secured channel with an authenticated

service. The person needs to determine the identity of the

    service based on the authenticated credentials.
  • A person validates the signature on critical information, such as

signed executable code, and needs to determine the identity of the

    signer based on the signer's certificate.
  • A person is required to select an appropriate certificate to be

used when authenticating to a service or identity management

    infrastructure.  The person needs to see the available
    certificates in order to distinguish between them in the selection
    process.
 The display of certificate information to humans is challenging due
 to lack of well-defined semantics for critical identity attributes.
 Unless the application has out-of-band knowledge about a particular
 certificate, the application will not know the exact nature of the
 data stored in common identification attributes, such as
 serialNumber, organizationName, country, etc.  Consequently, the
 application can display the actual data but faces the problem of
 labeling that data in the UI and informing the human about the exact
 nature (semantics) of that data.  It is also challenging for the
 application to determine which identification attributes are
 important to display and how to organize them in a logical order.
 When present, the certificate image MUST be a complete visual
 representation of the certificate.  This means that the display of
 this certificate image represents all information about the
 certificate that the issuer subjectively defines as relevant to show
 to a typical human user within the typical intended use of the
 certificate, giving adequate information about at least the following
 three aspects of the certificate:
  • certificate context
  • certificate issuer
  • certificate subject
 Certificate context information is visual marks and/or textual
 information that helps the typical user to understand the typical
 usage and/or purpose of the certificate.
 It is up to the issuer to decide what information -- in the form of
 text, graphical symbols, and elements -- represents a complete visual
 representation of the certificate.  However, the visual
 representation of certificate subject and certificate issuer
 information from the certificate MUST have the same meaning as the
 textual representation of that information in the certificate itself.
 Applications providing a Graphical User Interface (GUI) to the
 certificate user MAY present a certificate image as the only visual
 representation of a certificate; however, the certificate user SHOULD
 be able to easily obtain the details of the certificate content.

5. Type of Certificates

 Logotypes MAY be included in public key certificates and attribute
 certificates at the discretion of the certificate issuer; however,
 the relying party MUST NOT use the logotypes as part of certification
 path validation or automated trust decisions.  The sole purpose of
 logotypes is to enhance the display of a particular certificate,
 regardless of its position in a certification path.

6. Use in Clients

 All PKI implementations require relying party software to have some
 mechanism to determine whether a trusted CA issues a particular
 certificate.  This is an issue for certification path validation,
 including consistent policy and name checking.
 After a certification path is successfully validated, the replying
 party trusts the information that the CA includes in the certificate,
 including any certificate extensions.  The client software can choose
 to make use of such information, or the client software can ignore
 it.  If the client is unable to support a provided logotype, the
 client MUST NOT report an error; instead, the client MUST behave as
 though no logotype certificate extension was included in the
 certificate.  Current standards do not provide any mechanism for
 cross-certifying CAs to constrain subordinate CAs from including
 private extensions (see Section 9).
 Consequently, if relying party software accepts a CA, then it should
 be prepared to (unquestioningly) display the associated logotypes to
 its human user, given that it is configured to do so.  Information
 about the logotypes is provided so that the replying party software
 can select the one that will best meet the needs of the human user.
 This choice depends on the abilities of the human user, as well as
 the capabilities of the platform on which the replaying party
 software is running.  If none of the provided logotypes meets the
 needs of the human user or matches the capabilities of the platform,
 then the logotypes can be ignored.
 A client MAY, subject to local policy, choose to display none, one,
 or any number of the logotypes in the logotype certificate extension.
 In many cases, a client will be used in an environment with a good
 network connection and also used in an environment with little or no
 network connectivity.  For example, a laptop computer can be docked
 with a high-speed LAN connection, or it can be disconnected from the
 network altogether.  In recognition of this situation, the client
 MUST include the ability to disable the fetching of logotypes.
 However, locally cached logotypes can still be displayed when the
 user disables the fetching of additional logotypes.
 A client MAY, subject to local policy, choose any combination of
 audio and image presentation for each logotype.  That is, the client
 MAY display an image with or without playing a sound, and it MAY play
 a sound with or without displaying an image.  A client MUST NOT play
 more than one logotype audio sequence at the same time.
 The logotype is to be displayed in conjunction with other identity
 information contained in the certificate.  The logotype is not a
 replacement for this identity information.
 Care is needed when designing replying party software to ensure that
 an appropriate context of logotype information is provided.  This is
 especially difficult with audio logotypes.  It is important that the
 human user be able to recognize the context of the logotype, even if
 other audio streams are being played.
 If the relying party software is unable to successfully validate a
 particular certificate, then it MUST NOT display any logotype data
 associated with that certificate.

7. Image Formats

 Animated images SHOULD NOT be used.
 The following table lists common image formats and the corresponding
 media type.  The table also indicates the support requirements for
 these image formats.  The file name extensions commonly used for each
 of these formats is also provided.  Implementations MAY support other
 image formats.
    +========+==============+===========+============+============+
    | Format | Media Type   | Extension | References | Implement? |
    +========+==============+===========+============+============+
    | JPEG   | image/jpeg   | .jpg      | [JPEG]     | MUST       |
    |        |              | .jpeg     | [RFC2046]  | support    |
    +--------+--------------+-----------+------------+------------+
    | GIF    | image/gif    | .gif      | [GIF]      | MUST       |
    |        |              |           | [RFC2046]  | support    |
    +--------+--------------+-----------+------------+------------+
    | SVG    | image/       | .svg      | [SVGT]     | SHOULD     |
    |        | svg+xml      |           | [SVGR]     | support    |
    +--------+--------------+-----------+------------+------------+
    | SVG +  | image/       | .svgz     | [SVGT]     | MUST       |
    | GZIP   | svg+xml+gzip | .svg.gz   | [SVGZR]    | support    |
    +--------+--------------+-----------+------------+------------+
    | PNG    | image/png    | .png      | [ISO15948] | SHOULD     |
    |        |              |           | [PNGR]     | support    |
    +--------+--------------+-----------+------------+------------+
    | PDF    | application/ | .pdf      | [ISO32000] | MAY        |
    |        | pdf          |           | [ISO19005] | support    |
    |        |              |           | [RFC8118]  |            |
    +--------+--------------+-----------+------------+------------+
                         Table 1: Image Formats
    |  NOTE: The image/svg+xml-compressed media type is widely
    |  implemented, but it has not yet been registered with IANA.
 When a Scalable Vector Graphics (SVG) image is used, whether the
 image is compressed or not, the SVG Tiny profile [SVGT] MUST be
 followed, with these additional restrictions:
  • The SVG image MUST NOT contain any Internationalized Resource

Identifier (IRI) references to information stored outside of the

    SVG image of type B, C, or D, according to Section 14.1.4 of
    [SVGT].
  • The SVG image MUST NOT contain any script element, according to

Section 15.2 of [SVGT].

  • The XML structure in the SVG file MUST use linefeed (0x0A) as the

end-of-line (EOL) character when calculating a hash over the SVG

    image.
 When a GZIP-compressed SVG image is fetched with HTTP, the client
 will receive a response that includes these headers:
    Content-Type: image/svg+xml
    Content-Encoding: gzip
 In this case, the octet stream of type image/svg+xml is compressed
 with GZIP [RFC1952], as specified in [SVGR].
 When an uncompressed SVG image is fetched with HTTP, the client will
 receive a response with the same Content-Type header but no Content-
 Encoding header.
 Whether the SVG image is GZIP-compressed or uncompressed, the hash
 value for the SVG image is calculated over the uncompressed SVG
 content with canonicalized EOL characters, as specified above.
 When an SVG image is embedded in the certificate extension using the
 "data" URL scheme, the SVG image data MUST be provided in GZIP-
 compressed form, and the XML structure, prior to compression, SHOULD
 use linefeed (0x0A) as the end-of-line (EOL) character.
 When a bitmap image is used, the PNG [ISO15948] format SHOULD be
 used.
 According to [ISO32000], when a Portable Document Format (PDF)
 document is used, it MUST also be formatted according to the profile
 PDF/A [ISO19005].

8. Audio Formats

 Implementations that support audio MUST support the MP3 audio format
 [MP3] with a media type of "audio/mpeg" [RFC3003].  Implementations
 SHOULD support text-based audio data with a media type of "text/
 plain;charset=UTF-8".  Implementations MAY support other audio
 formats.
 Text-based audio data using the media type of "text/
 plain;charset=UTF-8" is intended to be used by text-to-speech
 software.  When this audio type is used, the following requirements
 apply:
  • LogotypeAudioInfo MUST be present and specify the language of the

text.

  • The fileSize, playTime, and channels elements of LogotypeAudioInfo

MUST have the value of 0.

  • The sampleRate element of LogotypeAudioInfo MUST be absent.

9. Security Considerations

 Implementations that simultaneously display multiple logotype types
 (subject organization, issuer organization, community, or other) MUST
 ensure that there is no ambiguity as to the binding between the image
 and the type of logotype that the image represents.  "Logotype type"
 is defined in Section 1.1, and it refers to the type of entity or
 affiliation represented by the logotype, not the of binary format of
 the image or audio.
 Logotypes are very difficult to securely and accurately define.
 Names are also difficult in this regard, but logotypes are even
 worse.  It is quite difficult to specify what is, and what is not, a
 legitimate logotype of an organization.  There is an entire legal
 structure around this issue, and it will not be repeated here.
 However, issuers should be aware of the implications of including
 images associated with a trademark or servicemark before doing so.
 As logotypes can be difficult (and sometimes expensive) to verify,
 the possibility of errors related to assigning wrong logotypes to
 organizations is increased.
 This is not a new issue for electronic identification instruments.
 It is already dealt with in a number of similar situations in the
 physical world, including physical employee identification cards.  In
 addition, there are situations where identification of logotypes is
 rather simple and straightforward, such as logotypes for well-known
 industries and institutes.  These issues should not stop those
 service providers who want to issue logotypes from doing so, where
 relevant.
 It is impossible to prevent fraudulent creation of certificates by
 dishonest or badly performing issuers, containing names and logotypes
 that the issuer has no claim to or has failed to check correctly.
 Such certificates could be created in an attempt to socially engineer
 a user into accepting a certificate.  The premise used for the
 logotype work is thus that logotype graphics in a certificate are
 trusted only if the certificate is successfully validated within a
 valid path.  It is thus imperative that the representation of any
 certificate that fails to validate is not enhanced in any way by
 using the logotype data.
 This underlines the necessity for CAs to provide reliable services
 and the relying party's responsibility and need to carefully select
 which CAs are trusted to provide public key certificates.
 This also underlines the general necessity for relying parties to use
 up-to-date software libraries to render or dereference data from
 external sources, including logotype data in certificates, to
 minimize risks related to processing potentially malicious data
 before it has been adequately verified and validated.  Implementers
 should review the guidance in Section 7 of [RFC3986].
 Referenced image objects are hashed in order to bind the image to the
 signature of the certificate.  Some image types, such as SVG, allow
 part of the image to be collected from an external source by
 incorporating a reference to an external file that contains the
 image.  If this feature were used within a logotype image, the hash
 of the image would only cover the URI reference to the external image
 file but not the referenced image data.  Clients SHOULD verify that
 SVG images meet all requirements listed in Section 7 and reject
 images that contain references to external data.
 CAs issuing certificates with embedded logotype images should be
 cautious when accepting graphics from the certificate requester for
 inclusion in the certificate if the hash algorithm used to sign the
 certificate is vulnerable to collision attacks, as described in
 [RFC6151].  In such a case, the accepted image may contain data that
 could help an attacker to obtain colliding certificates with
 identical certificate signatures.
 Certification paths may also impose name constraints that are
 systematically checked during certification path processing, which,
 in theory, may be circumvented by logotypes.
 Certificate path processing, as defined in [RFC5280], does not
 constrain the inclusion of logotype data in certificates.  A parent
 CA can constrain certification path validation such that subordinate
 CAs cannot issue valid certificates to end entities outside a limited
 name space or outside specific certificate policies.  A malicious CA
 can comply with these name and policy requirements and still include
 inappropriate logotypes in the certificates that it issues.  These
 certificates will pass the certification path validation algorithm,
 which means the client will trust the logotypes in the certificates.
 Since there is no technical mechanism to prevent or control
 subordinate CAs from including the logotype certificate extension or
 its contents, where appropriate, a parent CA could employ a legal
 agreement to impose a suitable restriction on the subordinate CA.
 This situation is not unique to the logotype certificate extension.
 When a relying party fetches remote logotype data, a mismatch between
 the media type provided in the mediaType field of the LogotypeDetails
 and the Content-Type HTTP header of the retrieved object MUST be
 treated as a failure, and the fetched logotype data should not be
 presented to the user.  However, if more than one location for the
 remote logotype data is provided in the certificate extension, the
 relying party MAY try to fetch the remote logotype data from an
 alternate location to resolve the failure.
 When a subscriber requests the inclusion of remote logotype data in a
 certificate, the CA cannot be sure that any logotype data will be
 available at the provided URI for the entire validity period of the
 certificate.  To mitigate this concern, the CA may provide the
 logotype data from a server under its control, rather than a
 subscriber-controlled server.
 The controls available to a parent CA to protect itself from rogue
 subordinate CAs are non-technical.  They include:
  • Contractual agreements of suitable behavior, including terms of

liability in case of material breach.

  • Control mechanisms and procedures to monitor and follow the

behavior of subordinate CAs, including Certificate Transparency

    [RFC9162].
  • Use of certificate policies to declare an assurance level of

logotype data, as well as to guide applications on how to treat

    and display logotypes.
  • Use of revocation functions to revoke any misbehaving CA.
 There is not a simple, straightforward, and absolute technical
 solution.  Rather, involved parties must settle some aspects of PKI
 outside the scope of technical controls.  As such, issuers need to
 clearly identify and communicate the associated risks.

10. Privacy Considerations

 Certificates are commonly public objects, so the inclusion of
 privacy-sensitive information in certificates should be avoided.  The
 more information that is included in a certificate, the greater the
 likelihood that the certificate will reveal privacy-sensitive
 information.  The inclusion of logotype data needs to be considered
 in this context.
 Logotype data might be fetched from a server when it is needed.  By
 watching activity on the network, an observer can determine which
 clients are making use of certificates that contain particular
 logotype data.  Since clients are expected to locally cache logotype
 data, network traffic to the server containing the logotype data will
 not be generated every time the certificate is used.  Further, when
 logotype data is not cached, activity on the network might reveal
 certificate usage frequency.  Even when logotype data is cached,
 regardless of whether direct or indirect addressing is employed,
 network traffic monitoring could reveal when logotype data is fetched
 for the first time.  Implementations MAY encrypt fetches of logotype
 data using HTTPS, padding the data to a common size to reduce
 visibility into the data that is being fetched.  Likewise, servers
 MAY reduce visibility into the data that is being returned by
 encrypting with HTTPS and padding to a few common sizes.
 Similarly, when fetching logotype data from a server, the server
 operator can determine which clients are making use of certificates
 that contain particular logotype data.  As above, locally caching
 logotype data will eliminate the need to fetch the logotype data each
 time the certificate is used, and lack of caching would reveal usage
 frequency.  Even when implementations cache logotype data, regardless
 of whether direct or indirect addressing is employed, the server
 operator could observe when logotype data is fetched for the first
 time.
 In addition, the use of an encrypted DNS mechanism, such as DNS over
 TLS (DoT) [RFC7858] or DNS over HTTPS (DoH) [RFC9230], hides the name
 resolution traffic, which is usually a first step in fetching remote
 logotype objects.
 When the "data" URI scheme is used with direct addressing, there is
 no network traffic to fetch logotype data, which avoids the
 observations of network traffic or server operations described above.
 To obtain this benefit, the certificate will be larger than one that
 contains a URL.  Due to the improved privacy posture, the "data" URI
 scheme with direct addressing will be the only one that is supported
 by some CAs.  Privacy-aware certificate subscribers MAY wish to
 insist that logotype data is embedded in the certificate with the
 "data" URI scheme with direct addressing.
 In cases where logotype data is cached by the relying party, the
 cache index should include the hash values of the associated logotype
 data with the goal of fetching the logotype data only once, even when
 it is referenced by multiple URIs.  The index should include hash
 values for all supported hash algorithms.  The cached data should
 include the media type as well as the logotype data.  Implementations
 should give preference to logotype data that is already in the cache
 when multiple alternatives are offered in the LogotypeExtn
 certificate extension.
 When the "data" URI scheme is used, the relying party MAY add the
 embedded logotype data to the local cache, which could avoid the need
 to fetch the logotype data if it is referenced by a URL in another
 certificate.
 When fetching remote logotype data, relying parties should use the
 most privacy-preserving options that are available to minimize the
 opportunities for servers to "fingerprint" clients.  For example,
 avoid cookies, ETags, and client certificates.
 When a relying party encounters a new certificate, the lack of
 network traffic to fetch logotype data might indicate that a
 certificate with references to the same logotype data has been
 previously processed and cached.
 TLS 1.3 [RFC8446] includes the ability to encrypt the server's
 certificate in the TLS handshake, which helps hide the server's
 identity from anyone that is watching activity on the network.  If
 the server's certificate includes remote logotype data, the client
 fetching that data might disclose the otherwise protected server
 identity.

11. IANA Considerations

 For the new ASN.1 module in Appendix A.2, IANA has assigned the
 following OID in the "SMI Security for PKIX Module Identifier"
 registry (1.3.6.1.5.5.7.0):
 +=========+======================+============+
 | Decimal | Description          | References |
 +=========+======================+============+
 | 107     | id-mod-logotype-2022 | RFC 9399   |
 +---------+----------------------+------------+
                     Table 2
 IANA has updated the entries in the "Structure of Management
 Information (SMI) Numbers" registry that referred to [RFC3709] or
 [RFC6170] to refer to this document.  These entries are noted in the
 tables below.
 From the "SMI Security for PKIX Module Identifier" registry
 (1.3.6.1.5.5.7.0):
 +=========+===========================+============+
 | Decimal | Description               | References |
 +=========+===========================+============+
 | 22      | id-mod-logotype           | RFC 9399   |
 +---------+---------------------------+------------+
 | 68      | id-mod-logotype-certimage | RFC 9399   |
 +---------+---------------------------+------------+
                       Table 3
 From the "SMI Security for PKIX Certificate Extension" registry
 (1.3.6.1.5.5.7.1):
 +=========+================+============+
 | Decimal | Description    | References |
 +=========+================+============+
 | 12      | id-pe-logotype | RFC 9399   |
 +---------+----------------+------------+
                  Table 4
 From the "SMI Security for PKIX Other Logotype Identifiers" registry
 (1.3.6.1.5.5.7.20):
 +=========+====================+============+
 | Decimal | Description        | References |
 +=========+====================+============+
 | 1       | id-logo-loyalty    | RFC 9399   |
 +---------+--------------------+------------+
 | 2       | id-logo-background | RFC 9399   |
 +---------+--------------------+------------+
 | 3       | id-logo-certImage  | RFC 9399   |
 +---------+--------------------+------------+
                    Table 5

12. References

12.1. Normative References

 [GIF]      CompuServe Incorporated, "Graphics Interchange Format",
            Version 89a, July 1990,
            <https://www.w3.org/Graphics/GIF/spec-gif89a.txt>.
 [ISO15948] ISO/IEC, "Information technology -- Computer graphics and
            image processing -- Portable Network Graphics (PNG):
            Functional specification", ISO/IEC 15948:2004, March 2004.
 [JPEG]     ITU-T, "Information technology -- Digital compression and
            coding of continuous-tone still images: JPEG File
            Interchange Format (JFIF)", ITU-T Recommendation T.871,
            ISO/IEC 10918-5:2013, May 2013.
 [MP3]      ISO/IEC, "Information technology -- Generic coding of
            moving pictures and associated audio information -- Part
            3: Audio", ISO/IEC 13818-3:1998, April 1998.
 [NEW-ASN1] ITU-T, "Information technology -- Abstract Syntax Notation
            One (ASN.1): Specification of basic notation", ITU-T
            Recommendation X.680, ISO/IEC 8824-1:2021, February 2021,
            <https://www.itu.int/rec/T-REC-X.680>.
 [RFC1952]  Deutsch, P., "GZIP file format specification version 4.3",
            RFC 1952, DOI 10.17487/RFC1952, May 1996,
            <https://www.rfc-editor.org/info/rfc1952>.
 [RFC2046]  Freed, N. and N. Borenstein, "Multipurpose Internet Mail
            Extensions (MIME) Part Two: Media Types", RFC 2046,
            DOI 10.17487/RFC2046, November 1996,
            <https://www.rfc-editor.org/info/rfc2046>.
 [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
            Requirement Levels", BCP 14, RFC 2119,
            DOI 10.17487/RFC2119, March 1997,
            <https://www.rfc-editor.org/info/rfc2119>.
 [RFC2397]  Masinter, L., "The "data" URL scheme", RFC 2397,
            DOI 10.17487/RFC2397, August 1998,
            <https://www.rfc-editor.org/info/rfc2397>.
 [RFC3003]  Nilsson, M., "The audio/mpeg Media Type", RFC 3003,
            DOI 10.17487/RFC3003, November 2000,
            <https://www.rfc-editor.org/info/rfc3003>.
 [RFC3986]  Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
            Resource Identifier (URI): Generic Syntax", STD 66,
            RFC 3986, DOI 10.17487/RFC3986, January 2005,
            <https://www.rfc-editor.org/info/rfc3986>.
 [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
            Specifications: ABNF", STD 68, RFC 5234,
            DOI 10.17487/RFC5234, January 2008,
            <https://www.rfc-editor.org/info/rfc5234>.
 [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
            Housley, R., and W. Polk, "Internet X.509 Public Key
            Infrastructure Certificate and Certificate Revocation List
            (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
            <https://www.rfc-editor.org/info/rfc5280>.
 [RFC5646]  Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
            Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
            September 2009, <https://www.rfc-editor.org/info/rfc5646>.
 [RFC5755]  Farrell, S., Housley, R., and S. Turner, "An Internet
            Attribute Certificate Profile for Authorization",
            RFC 5755, DOI 10.17487/RFC5755, January 2010,
            <https://www.rfc-editor.org/info/rfc5755>.
 [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
            2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
            May 2017, <https://www.rfc-editor.org/info/rfc8174>.
 [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
            Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
            <https://www.rfc-editor.org/info/rfc8446>.
 [RFC9110]  Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
            Ed., "HTTP Semantics", STD 97, RFC 9110,
            DOI 10.17487/RFC9110, June 2022,
            <https://www.rfc-editor.org/info/rfc9110>.
 [SVGT]     World Wide Web Consortium, "Scalable Vector Graphics (SVG)
            Tiny 1.2 Specification", W3C REC-SVGTiny12-20081222,
            December 2008,
            <http://www.w3.org/TR/2008/REC-SVGTiny12-20081222/>.

12.2. Informative References

 [ISO19005] ISO, "Document management -- Electronic document file
            format for long-term preservation -- Part 1: Use of PDF
            1.4 (PDF/A-1)", ISO 19005-1:2005, October 2005.
 [ISO32000] ISO, "Document management -- Portable document format --
            Part 1: PDF 1.7", ISO 32000-1:2008, July 2008.
 [OLD-ASN1] CCITT, "Specification of Abstract Syntax Notation One
            (ASN.1)", CCITT Recommendation X.208, November 1988,
            <https://www.itu.int/rec/T-REC-X.208/en>.
 [PNGR]     World Wide Web Consortium, "Media Type Registration for
            image/png",
            <https://www.iana.org/assignments/media-types/image/png>.
 [RFC3709]  Santesson, S., Housley, R., and T. Freeman, "Internet
            X.509 Public Key Infrastructure: Logotypes in X.509
            Certificates", RFC 3709, DOI 10.17487/RFC3709, February
            2004, <https://www.rfc-editor.org/info/rfc3709>.
 [RFC5912]  Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
            Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
            DOI 10.17487/RFC5912, June 2010,
            <https://www.rfc-editor.org/info/rfc5912>.
 [RFC6151]  Turner, S. and L. Chen, "Updated Security Considerations
            for the MD5 Message-Digest and the HMAC-MD5 Algorithms",
            RFC 6151, DOI 10.17487/RFC6151, March 2011,
            <https://www.rfc-editor.org/info/rfc6151>.
 [RFC6170]  Santesson, S., Housley, R., Bajaj, S., and L. Rosenthol,
            "Internet X.509 Public Key Infrastructure -- Certificate
            Image", RFC 6170, DOI 10.17487/RFC6170, May 2011,
            <https://www.rfc-editor.org/info/rfc6170>.
 [RFC6268]  Schaad, J. and S. Turner, "Additional New ASN.1 Modules
            for the Cryptographic Message Syntax (CMS) and the Public
            Key Infrastructure Using X.509 (PKIX)", RFC 6268,
            DOI 10.17487/RFC6268, July 2011,
            <https://www.rfc-editor.org/info/rfc6268>.
 [RFC7858]  Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,
            and P. Hoffman, "Specification for DNS over Transport
            Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May
            2016, <https://www.rfc-editor.org/info/rfc7858>.
 [RFC8118]  Hardy, M., Masinter, L., Markovic, D., Johnson, D., and M.
            Bailey, "The application/pdf Media Type", RFC 8118,
            DOI 10.17487/RFC8118, March 2017,
            <https://www.rfc-editor.org/info/rfc8118>.
 [RFC9162]  Laurie, B., Messeri, E., and R. Stradling, "Certificate
            Transparency Version 2.0", RFC 9162, DOI 10.17487/RFC9162,
            December 2021, <https://www.rfc-editor.org/info/rfc9162>.
 [RFC9216]  Gillmor, D. K., Ed., "S/MIME Example Keys and
            Certificates", RFC 9216, DOI 10.17487/RFC9216, April 2022,
            <https://www.rfc-editor.org/info/rfc9216>.
 [RFC9230]  Kinnear, E., McManus, P., Pauly, T., Verma, T., and C.A.
            Wood, "Oblivious DNS over HTTPS", RFC 9230,
            DOI 10.17487/RFC9230, June 2022,
            <https://www.rfc-editor.org/info/rfc9230>.
 [SVGR]     World Wide Web Consortium, "Media Type Registration for
            image/svg+xml", <https://www.iana.org/assignments/media-
            types/image/svg+xml>.
 [SVGZR]    "A separate MIME type for svgz files is needed",
            <https://github.com/w3c/svgwg/issues/701>.

Appendix A. ASN.1 Modules

A.1. ASN.1 Modules with 1988 Syntax

 This appendix contains two ASN.1 modules, both using the old syntax
 [OLD-ASN1].
 The first ASN.1 module provides the syntax for the logotype
 certificate extension.  Only comments have changed in the module from
 [RFC3709] and the IMPORTS now come from [RFC5280].
 The second ASN.1 module provides the certificate image object
 identifier.  The module is unchanged from [RFC6170].
 <CODE BEGINS>
 LogotypeCertExtn
   { iso(1) identified-organization(3) dod(6) internet(1)
     security(5) mechanisms(5) pkix(7) id-mod(0)
     id-mod-logotype(22) }
 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN
 IMPORTS
    AlgorithmIdentifier FROM PKIX1Explicit88 -- RFC 5280
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-pkix1-explicit(18) };
  1. - Logotype Certificate Extension OID
 id-pe-logotype  OBJECT IDENTIFIER  ::=
    { iso(1) identified-organization(3) dod(6) internet(1)
      security(5) mechanisms(5) pkix(7) id-pe(1) 12 }
  1. - Logotype Certificate Extension Syntax
 LogotypeExtn ::= SEQUENCE {
    communityLogos  [0] EXPLICIT SEQUENCE OF LogotypeInfo OPTIONAL,
    issuerLogo      [1] EXPLICIT LogotypeInfo OPTIONAL,
    subjectLogo     [2] EXPLICIT LogotypeInfo OPTIONAL,
    otherLogos      [3] EXPLICIT SEQUENCE OF OtherLogotypeInfo
                           OPTIONAL }
  1. - Note: At least one of the OPTIONAL components MUST be present
 LogotypeInfo ::= CHOICE {
    direct          [0] LogotypeData,
    indirect        [1] LogotypeReference }
 LogotypeData ::= SEQUENCE {
    image           SEQUENCE OF LogotypeImage OPTIONAL,
    audio           [1] SEQUENCE OF LogotypeAudio OPTIONAL }
  1. - Note: At least one of the OPTIONAL components MUST be present
 LogotypeImage ::= SEQUENCE {
    imageDetails    LogotypeDetails,
    imageInfo       LogotypeImageInfo OPTIONAL }
 LogotypeAudio ::= SEQUENCE {
    audioDetails    LogotypeDetails,
    audioInfo       LogotypeAudioInfo OPTIONAL }
 LogotypeDetails ::= SEQUENCE {
    mediaType       IA5String, -- Media type name and optional
                               -- parameters
    logotypeHash    SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
    logotypeURI     SEQUENCE SIZE (1..MAX) OF IA5String }
 LogotypeImageInfo ::= SEQUENCE {
    type            [0] LogotypeImageType DEFAULT color,
    fileSize        INTEGER,  -- In octets, 0=unspecified
    xSize           INTEGER,  -- Horizontal size in pixels
    ySize           INTEGER,  -- Vertical size in pixels
    resolution      LogotypeImageResolution OPTIONAL,
    language        [4] IA5String OPTIONAL }  -- RFC 5646 Language Tag
 LogotypeImageType ::= INTEGER { grayScale(0), color(1) }
 LogotypeImageResolution ::= CHOICE {
    numBits         [1] INTEGER,   -- Resolution in bits per pixel
    tableSize       [2] INTEGER }  -- Number of colors or grey tones
 LogotypeAudioInfo ::= SEQUENCE {
    fileSize        INTEGER,  -- In octets, 0=unspecified
    playTime        INTEGER,  -- In milliseconds, 0=unspecified
    channels        INTEGER,  -- 0=unspecified,
                              -- 1=mono, 2=stereo, 4=quad
    sampleRate      [3] INTEGER OPTIONAL,  -- Samples per second
    language        [4] IA5String OPTIONAL }  -- RFC 5646 Language Tag
 OtherLogotypeInfo ::= SEQUENCE {
    logotypeType    OBJECT IDENTIFIER,
    info            LogotypeInfo }
 LogotypeReference ::= SEQUENCE {
    refStructHash   SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
    refStructURI    SEQUENCE SIZE (1..MAX) OF IA5String }
                     -- Places to get the same LogotypeData
                     -- image or audio object
  1. - Note: The referenced LogotypeData binary file contains a
  2. - DER-encoded LogotypeData type
 HashAlgAndValue ::= SEQUENCE {
    hashAlg         AlgorithmIdentifier,
    hashValue       OCTET STRING }
  1. - Other logotype type OIDs
 id-logo OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
    dod(6) internet(1) security(5) mechanisms(5) pkix(7) 20 }
 id-logo-loyalty    OBJECT IDENTIFIER ::= { id-logo 1 }
 id-logo-background OBJECT IDENTIFIER ::= { id-logo 2 }
 END
 CERT-IMAGE-MODULE { iso(1) identified-organization(3) dod(6)
     internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
     id-mod-logotype-certimage(68) }
 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN
 EXPORTS ALL;   -- export all items from this module
 id-logo-certImage  OBJECT IDENTIFIER  ::=
    { iso(1) identified-organization(3) dod(6) internet(1)
      security(5) mechanisms(5) pkix(7) id-logo(20) 3 }
 END
 <CODE ENDS>

A.2. ASN.1 Module with 2002 Syntax

 Some developers like to use the latest version of ASN.1 standards.
 This appendix provides an ASN.1 module to assist in that goal.  It
 uses the ASN.1 syntax defined in [NEW-ASN1], and it follows the
 conventions established in [RFC5912] and [RFC6268].
 This ASN.1 module incorporates the module from [RFC3709] and the
 module from [RFC6170].
 Note that [NEW-ASN1] was published in 2021, and all of the features
 used in this module are backward compatible with the specification
 that was published in 2002.
 <CODE BEGINS>
 LogotypeCertExtn-2022
   { iso(1) identified-organization(3) dod(6) internet(1)
     security(5) mechanisms(5) pkix(7) id-mod(0)
     id-mod-logotype-2022(107) }
 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN
 IMPORTS
   EXTENSION
   FROM PKIX-CommonTypes-2009  -- RFC 5912
     { iso(1) identified-organization(3) dod(6) internet(1)
       security(5) mechanisms(5) pkix(7) id-mod(0)
       id-mod-pkixCommon-02(57) }
   AlgorithmIdentifier{}, DIGEST-ALGORITHM
   FROM AlgorithmInformation-2009
     { iso(1) identified-organization(3) dod(6) internet(1)
       security(5) mechanisms(5) pkix(7) id-mod(0)
       id-mod-algorithmInformation-02(58) } ;
  1. - Logotype Certificate Extension
 ext-logotype EXTENSION ::= {
    SYNTAX LogotypeExtn
    IDENTIFIED BY id-pe-logotype }
  1. - Logotype Certificate Extension OID
 id-pe-logotype  OBJECT IDENTIFIER  ::=
    { iso(1) identified-organization(3) dod(6) internet(1)
      security(5) mechanisms(5) pkix(7) id-pe(1) 12 }
  1. - Logotype Certificate Extension Syntax
 LogotypeExtn ::= SEQUENCE {
    communityLogos  [0] EXPLICIT SEQUENCE OF LogotypeInfo OPTIONAL,
    issuerLogo      [1] EXPLICIT LogotypeInfo OPTIONAL,
    subjectLogo     [2] EXPLICIT LogotypeInfo OPTIONAL,
    otherLogos      [3] EXPLICIT SEQUENCE OF OtherLogotypeInfo
                           OPTIONAL }
       -- At least one of the OPTIONAL components MUST be present
       ( WITH COMPONENTS { ..., communityLogos PRESENT } |
         WITH COMPONENTS { ..., issuerLogo PRESENT } |
         WITH COMPONENTS { ..., subjectLogo PRESENT } |
         WITH COMPONENTS { ..., otherLogos PRESENT } )
 LogotypeInfo ::= CHOICE {
    direct          [0] LogotypeData,
    indirect        [1] LogotypeReference }
 LogotypeData ::= SEQUENCE {
    image           SEQUENCE OF LogotypeImage OPTIONAL,
    audio           [1] SEQUENCE OF LogotypeAudio OPTIONAL }
       -- At least one image component MUST be present
       ( WITH COMPONENTS { ..., image PRESENT } )
 LogotypeImage ::= SEQUENCE {
    imageDetails    LogotypeDetails,
    imageInfo       LogotypeImageInfo OPTIONAL }
 LogotypeAudio ::= SEQUENCE {
    audioDetails    LogotypeDetails,
    audioInfo       LogotypeAudioInfo OPTIONAL }
 LogotypeDetails ::= SEQUENCE {
    mediaType       IA5String, -- Media type name and optional
                               -- parameters
    logotypeHash    SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
    logotypeURI     SEQUENCE SIZE (1..MAX) OF IA5String }
 LogotypeImageInfo ::= SEQUENCE {
    type            [0] LogotypeImageType DEFAULT color,
    fileSize        INTEGER,  -- In octets, 0=unspecified
    xSize           INTEGER,  -- Horizontal size in pixels
    ySize           INTEGER,  -- Vertical size in pixels
    resolution      LogotypeImageResolution OPTIONAL,
    language        [4] IA5String OPTIONAL }  -- RFC 5646 Language Tag
 LogotypeImageType ::= INTEGER { grayScale(0), color(1) }
 LogotypeImageResolution ::= CHOICE {
    numBits         [1] INTEGER,   -- Resolution in bits
    tableSize       [2] INTEGER }  -- Number of colors or grey tones
 LogotypeAudioInfo ::= SEQUENCE {
    fileSize        INTEGER,  -- In octets, 0=unspecified
    playTime        INTEGER,  -- In milliseconds, 0=unspecified
    channels        INTEGER,  -- 0=unspecified
                              -- 1=mono, 2=stereo, 4=quad
    sampleRate      [3] INTEGER OPTIONAL,  -- Samples per second
    language        [4] IA5String OPTIONAL }  -- RFC 5646 Language Tag
 OtherLogotypeInfo ::= SEQUENCE {
    logotypeType    OBJECT IDENTIFIER,
    info            LogotypeInfo }
 LogotypeReference ::= SEQUENCE {
    refStructHash   SEQUENCE SIZE (1..MAX) OF HashAlgAndValue,
    refStructURI    SEQUENCE SIZE (1..MAX) OF IA5String }
                     -- Places to get the same LogotypeData
                     -- image or audio object
  1. - Note: The referenced LogotypeData binary file contains a
  2. - DER-encoded LogotypeData type
 HashAlgAndValue ::= SEQUENCE {
    hashAlg         AlgorithmIdentifier{DIGEST-ALGORITHM, {...}},
    hashValue       OCTET STRING }
  1. - Other logotype type OIDs
 id-logo OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
    dod(6) internet(1) security(5) mechanisms(5) pkix(7) 20 }
 id-logo-loyalty    OBJECT IDENTIFIER ::= { id-logo 1 }
 id-logo-background OBJECT IDENTIFIER ::= { id-logo 2 }
 id-logo-certImage  OBJECT IDENTIFIER  ::= { id-logo 3 }
 END
 <CODE ENDS>

Appendix B. Examples

B.1. Example from RFC 3709

 The following example displays a logotype certificate extension
 containing one issuer organization logotype using direct addressing.
 The issuer organization logotype image is of the type image/gif.  The
 logotype image is referenced through one URI, and the image is hashed
 with SHA-256.  This example is changed from [RFC3709] to use SHA-256
 instead of SHA-1.
 The values on the left are the ASN.1 tag (in hexadecimal) and the
 length (in decimal).
 30 122: SEQUENCE {
 06   8:  OBJECT IDENTIFIER logotype (1 3 6 1 5 5 7 1 12)
 04 110:  OCTET STRING, encapsulates {
 30 108:   SEQUENCE {
 A1 106:    [1] {
 A0 104:     [0] {
 30 102:      SEQUENCE {
 30 100:       SEQUENCE {
 30  98:        SEQUENCE {
 16   9:         IA5String 'image/gif'
 30  49:         SEQUENCE {
 30  47:          SEQUENCE {
 30  11:           SEQUENCE {
 06   9:            OBJECT IDENTIFIER
       :             sha-256 (2 16 840 1 101 3 4 2 1)
       :             }
 04  32:           OCTET STRING
       :            6A 58 50 2E 59 67 F9 DD D1 8A FE BD 0D B1 FE 60
       :            A5 13 1B DF 0F B2 BE F0 B5 73 45 50 BA 1B BF 19
       :            }
       :           }
 30  34:         SEQUENCE {
 16  32:          IA5String 'http://logo.example.com/logo.gif'
       :           }
       :          }
       :         }
       :        }
       :       }
       :      }
       :     }
       :    }
       :   }

B.2. Issuer Organization Logotype Example

 The following example displays a logotype certificate extension
 containing one issuer organization logotype using direct addressing.
 The issuer organization logotype image is of the type image/jpeg.
 The logotype image is referenced through one URI, and the image is
 hashed with SHA-256.
 The values on the left are the ASN.1 tag (in hexadecimal) and the
 length (in decimal).
 30 124: SEQUENCE {
 06   8:  OBJECT IDENTIFIER logotype (1 3 6 1 5 5 7 1 12)
 04 112:  OCTET STRING, encapsulates {
 30 110:   SEQUENCE {
 A1 108:    [1] {
 A0 106:     [0] {
 30 104:      SEQUENCE {
 30 102:       SEQUENCE {
 30 100:        SEQUENCE {
 16  10:         IA5String 'image/jpeg'
 30  49:         SEQUENCE {
 30  47:          SEQUENCE {
 30  11:           SEQUENCE {
 06   9:            OBJECT IDENTIFIER
       :             sha-256 (2 16 840 1 101 3 4 2 1)
       :             }
 04  32:           OCTET STRING
       :            1E 8F 96 FD D3 50 53 EF C6 1C 9F FC F0 00 2E 53
       :            B4 9C 24 9A 32 C5 E9 0C 2C 39 39 D3 AD 6D A9 09
       :            }
       :           }
 30  35:         SEQUENCE {
 16  33:          IA5String 'http://logo.example.com/logo.jpeg'
       :           }
       :          }
       :         }
       :        }
       :       }
       :      }
       :     }
       :    }
       :   }

B.3. Embedded Image Example

 The following example displays a logotype certificate extension
 containing one subject organization logotype using direct addressing.
 The subject organization logotype image uses image/svg+xml+gzip.  The
 logotype image is embedded in the certificate extension with a
 "data:" URI, and the image is hashed by SHA-256.  This technique
 produces a large certificate extension but offers reduced latency and
 improved privacy.
 The values on the left are the ASN.1 tag (in hexadecimal) and the
 length (in decimal).
 30 2148: SEQUENCE {
 06    8:  OBJECT IDENTIFIER logotype (1 3 6 1 5 5 7 1 12)
 04 2134:  OCTET STRING, encapsulates {
 30 2130:   SEQUENCE {
 A2 2126:    [2] {
 A0 2122:     [0] {
 30 2118:      SEQUENCE {
 30 2114:       SEQUENCE {
 30 2110:        SEQUENCE {
 16   18:         IA5String 'image/svg+xml+gzip'
 30   49:         SEQUENCE {
 30   47:          SEQUENCE {
 30   11:           SEQUENCE {
 06    9:            OBJECT IDENTIFIER
        :             sha-256 (2 16 840 1 101 3 4 2 1)
        :             }
 04   32:           OCTET STRING
        :           C5 AC 94 1A 0A 25 1F B3 16 6F 97 C5 52 40 9B 49
        :           9E 7B 92 61 5A B0 A2 6C 19 BF B9 D8 09 C5 D9 E7
        :            }
        :           }
 30 2035:         SEQUENCE {
 16 2031:          IA5String
        :          ''
        :          '28tY29weS5zdmcApVbbbhs3EH3nV0y3Lw2Q9fK2JLewHDROU'
        :          'BRo2iBxW+RRlTa2UFkypIWV5ut7zlB2UqF9cuLlUktyLmfOz'
        :          'PD8xafbtdyPu/1qu5k17sw2sp/mm+V8vd2Ms2azbV5cmPNvX'
        :          'v16efXh7WvZ31/L299e/vzTpTRt1/0RLrvu1dUref/7j+Ktd'
        :          'Xawsete/9IYaW6m6e77rjscDmeHcLbdXXdX7zpu6t69vmxxo'
        :          'n08AREdRDt7tpyWDRRSz7+tgp2b/ew/hEKI5WGoPKyW082s8'
        :          'SmeWf13NzVyM66ub6ZZk+xXH+9X4+Hl9tOssWLly3553ARpd'
        :          '7txP+7uxx/2d+NiejefVttZ8+nNavkBj9yO40RLb8dpvpxP8'
        :          'wtzuRvn07iUP/+Wu+20my9GcWfOPpfDbjVN44YLb8dp3Mn7c'
        :          'b3aXGNCAICCc+a8+yLo/FpwfLP/uN3dzhqdriH5uwfbnj9a+'
        :          'Uz2i/maK66utA+zZ435uFqvZ823R38Q1t32Lw3pZqThd/PpR'
        :          'paz5o2LNkocvCzaIm0vrQvSpog359lLy3my0ga+e3Hp+B4In'
        :          'jVFPD9awdhnrGEFW30Sl/Pnpvta2QBVxUEVxFbJ2VUFfYC01'
        :          'pUs+O4GK84V/k6CHUFyhvhiDVQF8Y5aPDbmnsrXbS74DANjg'
        :          'uwgENZLPwjUYVTRJQgEpiLR0ctiWj+Ig8rCvZAArxKExEEWM'
        :          'JLqMA1F+ggnsQDXgpQeomJPCVhtCRycNrAWxgAI+g1Qsr6IU'
        :          'xlomBswjydYBEgOeVCDoRreBjiFjX2SdSA60BP5DgQM63xoP'
        :          'lWHbNq+egAEeAzxyNAdCQz+sDEMOhaGisKJdSlS6gtWWm4M1'
        :          'rQwP0egEBIhhFLoXuCJhR4mT5RJBaiLKqqFROUEzYr1idG0g'
        :          'ahwCzEnk+AMJLdp0FevQQ6VZ+SKOwGlOIJOh1MVjo0eB6DRA'
        :          '10SRpSY6il/eFFKAm+MKSIWNFqSo4OFnORfwH5wJHCMNM0ql'
        :          'DRlcIwUEkDlgiSBhiEpBgMKOx5FdAYqI3KYewKKkAItTABTk'
        :          'p5khI86kgbOgRywEBR0VGcwAjf8t9wqvdUMG6gLAbI0QQ8Cb'
        :          'zCTtCSn/DEhCbm++duQaiRG1mQkdWHnminHA+r5wpLvsJbCA'
        :          'LUKsDW5NAj43J+AD5vpfamUzJqiRJACmCWwIMhQq4HmYGKai'
        :          'iJPmIvpS80UzTtAjdSraApQZogslgFcJHw0y5WoEXDYr/aTq'
        :          'fxk2qhcg3z6ETQL+S18llvHOZQvlEOVEVpzqCozE9V6JZhh/'
        :          'lCslg7mUFY4AR7IlcApmgV6gz3DCSDe56fQ0SRS7el0NJWO8'
        :          'mQ6mkc6ylPpaL7QUZ5IR/M/dEwoJiEp+L6iT4cdSyIp4ljDk'
        :          'oaZpQlgMoz0ApahjTiTWbZYu9v+MUqVjY61j2Bxr68bPF3uS'
        :          '1232qAyAQDMhr4MRyVZq5l2QcuwgY/oTozbgoIKycH+yQxhz'
        :          'QsPJQ/ne9OmRKvYH1AeKA/EQRtzrmaYUiHUhpJOW4breSaxZ'
        :          '/TVc3ZAQJKOagAJiw6pRHVkBMIBa5E+SUMWi0ZNW1Rfn/xQX'
        :          'ywHXyMHN5G8WF6gZ2IVjANHMIJQ1lAJQE8MJjZHJiUtQZAWz'
        :          'mkisDywTVWSqLkkQG2NNB3wwyaerqRGLNKpvwUOhaQFiYcqv'
        :          'iSjvp1n8WnRRzXFs9IXDxiiDd8HU/ROoAGn9+QgTPEVu6HaN'
        :          '6i0VPuv1SCzwyZeHwBA1EjFYoAk2jJ3OFeJ5Gp1E+3Dlf3Aj'
        :          '70bbvmag5oyKHunVyGPq6+EnvTua/JUn3iadMHlqUapsK2T8'
        :          'SwCBJUF1JnEmhu0ntBthJoQpZqumsBk5mA1hRc0LR5ZFerdj'
        :          'ksaCqt3IUWXcXW16vb6xdWyHLTgCaKXWKUKK1kOp9HK5B3EL'
        :          'jSdXb0loB5RYtS01L6h9yTPW51Wpqwgosr5I927aw6401+Yf'
        :          'wDria4WoQwAAA=='
        :           }
        :          }
        :         }
        :        }
        :       }
        :      }
        :     }
        :    }
        :   }

B.4. Embedded Certificate Image Example

 The following example displays a logotype certificate extension
 containing one certificate image logotype using direct addressing.
 The certificate image logotype uses image/svg+xml+gzip.  The logotype
 image is embedded in the certificate extension with a "data:" URI,
 and the image is hashed by SHA-256.  This example contains the image
 from Appendix B of [RFC6170]; however, the media type used here is
 explicit about the use of GZIP compression [RFC1952].
 The values on the left are the ASN.1 tag (in hexadecimal) and the
 length (in decimal).
 30 2902: SEQUENCE {
 06    8:  OBJECT IDENTIFIER logotype (1 3 6 1 5 5 7 1 12)
 04 2888:  OCTET STRING, encapsulates {
 30 2884:   SEQUENCE {
 A3 2880:    [3] {
 30 2876:     SEQUENCE {
 30 2872:      SEQUENCE {
 06    8:       OBJECT IDENTIFIER '1 3 6 1 5 5 7 20 3'
 A0 2858:       [0] {
 30 2854:        SEQUENCE {
 30 2850:         SEQUENCE {
 30 2846:          SEQUENCE {
 16   18:           IA5String 'image/svg+xml+gzip'
 30   49:           SEQUENCE {
 30   47:            SEQUENCE {
 30   11:             SEQUENCE {
 06    9:              OBJECT IDENTIFIER
        :               sha-256 (2 16 840 1 101 3 4 2 1)
        :               }
 04   32:             OCTET STRING
        :           83 14 B3 26 9B D3 8B 0B 2A E6 6E 42 74 E2 A7 57
        :           7A 40 B7 E1 2E 53 42 44 CC 7C AE 14 68 1B 0E B6
        :              }
        :             }
 30 2771:           SEQUENCE {
 16 2767:            IA5String
        :          ''
        :          'nRJbWFnZURlbW8uc3ZnANVaW2/bOBZ+n19BqBigwdoS7xK9j'
        :          'meapB0EWHQHzez2WZZoR1tZMiQ5jvvr95CSL7Gl1Em8C9d9i'
        :          'ERSPOd85+O5EB3+9jhL0YMuyiTPLh3iYgfpLMrjJJteOv/66'
        :          '1M/cFBZhVkcpnmmL50sd34b/TIsH6YoiS+da11UySSJwkqj2'
        :          '1k41Q6CDbNyUMSTS+e+quYDz1sul+6SuXkx9YhSysPUo7QPK'
        :          '/rlKqvCx35Wvmu+a/uGYow9EOigh0Qvr/LHSwcjjDjGiGHQ9'
        :          '14n0/sKlMf4Vwctk7i6X7/sGEYdNA5L/WeRT5IUDKmSbLVWN'
        :          'oo2cqNCh1XyoKN8Nsuz0iqwVW8Qb1fOF0Vqp+PI06me6awqP'
        :          'eISzxn9goYzXYVxWIUWpfWLCMwcGoLpgy83n8wzGkbR4Gtef'
        :          'ENmMBznC7DEroKpOBpM8mIWVqPEYGtA+BvoMfS2E5uF1Wqu7'
        :          'R6FLvNFEelWReNolpiV3l2VpGntMW9nk6RKdf0+9BrFrMbeV'
        :          'uWhtzbHvMR6UlobPyVpBWjXBk7six2vH5nCwY6nXCo5xb7Yu'
        :          'svFVPqCOGh16fSxSxglmPkScLfvmDDmC4FlDc1wov8IF2WZh'
        :          'NlVumgEPRliimDD3PhGPyTgUUMC6lKqKAjxaptq1boUJvQFs'
        :          'vi+LOJyxZkPE/vCwHuAmXmoj1AarnRBatzqkbv7cK5Ls2ORf'
        :          'wM/vsOG5lURZqXxOnDXPKZw5t5jVzIhFKO0B6D6hARSXDR6F'
        :          'zqq7H7mQeJAOQiUSPvFIrUHOfuui3zrFI5dYVeAmpcOcOb9u'
        :          '63vLjae4kYX4yRifYPrTa2SlMigYdO+cEWeGADMLZLH96SH4'
        :          'R9xRYApl6q3Y02f+NzlRAl+cZSKhB6qSIVa80fsqMnWOqZJp'
        :          'msXwAPoyNaQ95uNIGasKPwhxGzQzOXzMIIzBKabmLIil470z'
        :          'fSjWWn+kvpvLQ9g1l3yRIc8gukz0uysEcakcDfy3KMk+l0SO'
        :          'XlOopltJL7EPtUlzZfP4tnM70k8xkKCySt92MwfIXPoTe0pn'
        :          'u4dYbp7hJ/kxWySN0ey0o/1qbiCsxDXJMWWo37QekBcAUFPS'
        :          'GkPCnUJF5wwBacDK5cGlEp4BC2lYoJcrNNGVc7DzIqxT4CKs'
        :          'PlrAG8mL8whRejiQe9EmImIAoz3sds9NxP4RZEzugqzb7c3Q'
        :          '89u3WQKY9aegbsA/AUJB/bJs6pfJt9BHFEuk5DWITzOH5uZS'
        :          'ThLUsDjQ5GE6RMsyihMTaQLfA6BIiAQMAhnHHN1sd61WtUhD'
        :          'VJiuhkrdBXd740+hLB9Vm1HjQe4ywLOBLWOMMiyQAXNB8sm9'
        :          'Gx2qdGgGkMG6wY8aLfqgH4dfnmrVc+pPrE/Z/QnZOs8C1Okb'
        :          '2/ggwLdxlDC1D6DFPZDD98txv8xQf5TEc7Ax6ZyaDf6BC4Sy'
        :          'lWKCMqtizp80+UMchATal63qHq0M3ZTs83Ob/XO6LYsFzpGV'
        :          'Y5+iLxdWvwY+NaKoR/0iJIXL3dBjT2hG+wO+NXm53XStSh1e'
        :          'ogfeojV35BTOaqh/cmPUe2Mdp91pQp2CjWOO2k7OamhjU1HB'
        :          '3DLGm66n6iajz4bqn2oICmNFxDR/x2mC5s+rKhlkUA3Ne3P8'
        :          'lgP0qJfjf9uvu+HWXSfFwNoH4uqGUmTadYMtOc7yjEEd9EUh'
        :          'kwEEOcDSHKQ+yhnSvUYRH8miQo2FK5TCjWZZGWKB8iHPud16'
        :          'wApnCvTOzjIFAj9TQdCxa+ddOTizaa1xJvD0qMrKx+Ydaj6i'
        :          'wJQG0vaSdYWpTv4HwVRAP3Z6ONjOJunEIeKRVmhujpA2+wPm'
        :          'QR9WFQAFhh9bGQzFEXX+WwOnXq8pV35P2Acdn0pGebcMg7Og'
        :          'QKaEdOKEAkFlk/9HuEKGBVwucc4AjnJ/LBYU09hVwWY1F0Hl'
        :          'BUC2lbyIuYF58O8p+adMwUt9YAoX/IwRtAC9NAdBAyGuEB3V'
        :          'R59u8/TGYx9/Xjz8bPB/Z/F9B0SghBK+4xxfiwtr0GXECqed'
        :          'QQ9PRVpEAQ+26MidbGSmPm8RwRzcQsT17EPSmoorH3+av4Jc'
        :          'j78O/vIp/uzMEkHKAE6/F7VHHSj8HddR0Q3ymcGZfRVjwfmO'
        :          'nNn3GuWR+FzhcPmPqiptHcayacT28T8j3Cs0/LQCwo6J2iYx'
        :          'P4R58AsobjFegusoJhuq7VNS2evRPcqASvQki+gbkBYwETNP'
        :          't/1A2pT6UErR1zMzUITZRvF5Lp5basO1fk2U4aBSjkji8quL'
        :          '3cDyW7TpI3unxezMcSTNhQJhfpGctKgKN2Amo7/7ShSev4oX'
        :          'icPSYS+6GkCm9a1Qw3VEchCUA+z5HtTcbQhK6F14YFUp+Yn7'
        :          'WgmzwpZCDf5DDiXT9B7U6RdHAHpdb7IqmLVjqZSLnTW61zjQ'
        :          '7/G7D3hm9E846uTDZoNMADmLlm7IG2ieXfUtu1US9TeNGUHi'
        :          'bE9Nv//2jRJGZfQmK3v7ykJJOv1IXjBsDCPpmgWppe6sHxR3'
        :          'KVSQKqp+WIqammuJbtqkxZmMHry4oS/9pLhdCXKq8uR0R+LD'
        :          'EqCKRxqc5VXdvPvIP+ggwR0RkyBfO9iKZvrWGAKVdz31cuoc'
        :          'voO/qemClFMYEFEH7oI+vpkek4s4bCMBqK+5mHQUlDpE/oyl'
        :          'py+2/6pWXK31PEYagP04epV1cE50UMy6IQZeQM7+Ol74Z+eH'
        :          'fpHNc7OjffQ/HeV0X8BopoDkGEkAAA='
        :             }
        :            }
        :           }
        :          }
        :         }
        :        }
        :       }
        :      }
        :     }
        :    }
        :   }

B.5. Full Certificate Example

 The following example contains a certificate for Alice; it is
 essentially a renewal of the certificate that appears in [RFC9216].
 Of course, the serial number and issue dates are different.  In
 addition, Alice's certificate now has a logotype certificate
 extension.  The extension contains URLs for two community logotype
 images, both at fictional URLs.  The extension also contains URLs for
 two subject organization logotype images, both at fictional URLs.  An
 implementation would display at most three of these images, both of
 the community logotype images and one of the subject organization
 logotype images.  Direct addressing is used for all of the images,
 and the images are hashed by SHA-256.
  1. —-BEGIN CERTIFICATE—–

MIIFpTCCBI2gAwIBAgITN0EFee11f0Kpolw69Phqzpqx1zANBgkqhkiG9w0BAQ0F

 ADBVMQ0wCwYDVQQKEwRJRVRGMREwDwYDVQQLEwhMQU1QUyBXRzExMC8GA1UEAxMo
 U2FtcGxlIExBTVBTIFJTQSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTAgFw0yMjA2
 MTUxODE4MThaGA8yMDUyMDkyNzA2NTQxOFowOzENMAsGA1UEChMESUVURjERMA8G
 A1UECxMITEFNUFMgV0cxFzAVBgNVBAMTDkFsaWNlIExvdmVsYWNlMIIBIjANBgkq
 hkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtPSJ6Fg4Fj5Nmn9PkrYo0jTkfCv4TfA/
 pdO/KLpZbJOAEr0sI7AjaO7B1GuMUFJeSTulamNfCwDcDkY63PQWl+DILs7GxVwX
 urhYdZlaV5hcUqVAckPvedDBc/3rz4D/esFfs+E7QMFtmd+K04s+A8TCNO12DRVB
 DpbP4JFD9hsc8prDtpGmFk7rd0q8gqnhxBW2RZAeLqzJOMayCQtws1q7ktkNBR2w
 ZX5ICjecF1YJFhX4jrnHwp/iELGqqaNXd3/Y0pG7QFecN7836IPPdfTMSiPR+peC
 rhJZwLSewbWXLJe3VMvbvQjoBMpEYlaJBUIKkO1zQ1Pq90njlsJLOwIDAQABo4IC
 hDCCAoAwDAYDVR0TAQH/BAIwADAXBgNVHSAEEDAOMAwGCmCGSAFlAwIBMAEwHgYD
 VR0RBBcwFYETYWxpY2VAc21pbWUuZXhhbXBsZTATBgNVHSUEDDAKBggrBgEFBQcD
 BDAOBgNVHQ8BAf8EBAMCBsAwHQYDVR0OBBYEFLv2zLItHQYSHJeuKWqQENMgZmZz
 MB8GA1UdIwQYMBaAFJEwjnwHFwyn8QkoZTYaZxxodvRZMIIB0AYIKwYBBQUHAQwE
 ggHCMIIBvqCB4zCB4KBvMG0wazBpFgppbWFnZS9qcGVnMDEwLzALBglghkgBZQME
 AgEEIK/8EBZGy1YltJl95Yk+rjqEb1oC04LW2o7U7vh8vR3tMCgWJmh0dHA6Ly93
 d3cuZXhhbXBsZS5uZXQvaW1hZ2VzL2xvZ28uanBnoG0wazBpMGcWCWltYWdlL2dp
 ZjAxMC8wCwYJYIZIAWUDBAIBBCCIkIGBrftmri9m0EmgTY6g7E6oZEI4WzZKvyyL
 0unpZjAnFiVodHRwOi8vd3d3LmV4YW1wbGUub3JnL2xvZ28taW1hZ2UuZ2lmooHV
 oIHSMIHPMGUwYxYJaW1hZ2UvZ2lmMDEwLzALBglghkgBZQMEAgEEIGpYUC5ZZ/nd
 0Yr+vQ2x/mClExvfD7K+8LVzRVC6G78ZMCMWIWh0dHA6Ly93d3cuc21pbWUuZXhh
 bXBsZS9sb2dvLmdpZjBmMGQWCmltYWdlL2pwZWcwMTAvMAsGCWCGSAFlAwQCAQQg
 vct7dXJtjBszpCzerHly2krZ8nmEClhYas4vAoDq16UwIxYhaHR0cDovL3d3dy5z
 bWltZS5leGFtcGxlL2xvZ28uanBnMA0GCSqGSIb3DQEBDQUAA4IBAQBbjdCNVFA/
 emCc5uKX5WSPrdvRFZSs57SEhE0odxvhTrOs13VM8Om0TxhNJ0Pl6d9CJdbUxtFw
 SSnSu9fnghDO7OZDJnPiIYLNY5eTTzY6sx85mde9TLaBTE7RZf0W7NV0hqDqcfM+
 9HnQrU4TtPSvtPS5rr5SvqkaMM0k89bpbkgZlh9HH14+x+DIeT0dLythiXJvkVod
 qEfyZTcdplQHQ4szWO7lsjmvHrUIbS1tdAJnah8AZRZfqiJEFeiUp06hvAWnPc3y
 1TMwYI8onfwPIVzyT6YLgjiT6PuLwSB/wtlhI+vWfdINaHdotegjawLm/3jZ+ceN
 tu39FvbV0uKJ
 -----END CERTIFICATE-----
 The following displays the logotype certificate extension from
 Alice's certificate.  The values on the left are the ASN.1 tag (in
 hexadecimal) and the length (in decimal).
 30 464: SEQUENCE {
 06   8:  OBJECT IDENTIFIER logotype (1 3 6 1 5 5 7 1 12)
 04 450:  OCTET STRING, encapsulates {
 30 446:   SEQUENCE {
 A0 227:    [0] {
 30 224:     SEQUENCE {
 A0 111:      [0] {
 30 109:       SEQUENCE {
 30 107:        SEQUENCE {
 30 105:         SEQUENCE {
 16  10:          IA5String 'image/jpeg'
 30  49:          SEQUENCE {
 30  47:           SEQUENCE {
 30  11:            SEQUENCE {
 06   9:             OBJECT IDENTIFIER
       :              sha-256 (2 16 840 1 101 3 4 2 1)
       :              }
 04  32:            OCTET STRING
       :            AF FC 10 16 46 CB 56 25 B4 99 7D E5 89 3E AE 3A
       :            84 6F 5A 02 D3 82 D6 DA 8E D4 EE F8 7C BD 1D ED
       :             }
       :            }
 30  40:          SEQUENCE {
 16  38:           IA5String 'http://www.example.net/images/logo.jpg'
       :            }
       :           }
       :          }
       :         }
       :        }
 A0 109:      [0] {
 30 107:       SEQUENCE {
 30 105:        SEQUENCE {
 30 103:         SEQUENCE {
 16   9:          IA5String 'image/gif'
 30  49:          SEQUENCE {
 30  47:           SEQUENCE {
 30  11:            SEQUENCE {
 06   9:             OBJECT IDENTIFIER
       :              sha-256 (2 16 840 1 101 3 4 2 1)
       :              }
 04  32:            OCTET STRING
       :            88 90 81 81 AD FB 66 AE 2F 66 D0 49 A0 4D 8E A0
       :            EC 4E A8 64 42 38 5B 36 4A BF 2C 8B D2 E9 E9 66
       :             }
       :            }
 30  39:          SEQUENCE {
 16  37:           IA5String 'http://www.example.org/logo-image.gif'
       :            }
       :           }
       :          }
       :         }
       :        }
       :       }
       :      }
 A2 213:    [2] {
 A0 210:     [0] {
 30 207:      SEQUENCE {
 30 101:       SEQUENCE {
 30  99:        SEQUENCE {
 16   9:         IA5String 'image/gif'
 30  49:         SEQUENCE {
 30  47:          SEQUENCE {
 30  11:           SEQUENCE {
 06   9:            OBJECT IDENTIFIER
       :             sha-256 (2 16 840 1 101 3 4 2 1)
       :             }
 04  32:           OCTET STRING
       :            6A 58 50 2E 59 67 F9 DD D1 8A FE BD 0D B1 FE 60
       :            A5 13 1B DF 0F B2 BE F0 B5 73 45 50 BA 1B BF 19
       :            }
       :           }
 30  35:         SEQUENCE {
 16  33:          IA5String 'http://www.smime.example/logo.gif'
       :           }
       :          }
       :         }
 30 102:       SEQUENCE {
 30 100:        SEQUENCE {
 16  10:         IA5String 'image/jpeg'
 30  49:         SEQUENCE {
 30  47:          SEQUENCE {
 30  11:           SEQUENCE {
 06   9:            OBJECT IDENTIFIER
       :             sha-256 (2 16 840 1 101 3 4 2 1)
       :             }
 04  32:           OCTET STRING
       :            BD CB 7B 75 72 6D 8C 1B 33 A4 2C DE AC 79 72 DA
       :            4A D9 F2 79 84 0A 58 58 6A CE 2F 02 80 EA D7 A5
       :            }
       :           }
 30  35:         SEQUENCE {
 16  33:          IA5String 'http://www.smime.example/logo.jpg'
       :           }
       :          }
       :         }
       :        }
       :       }
       :      }
       :     }
       :    }
       :   }

Appendix C. Changes since RFCs 3709 and 6170

 This appendix summarizes the changes since [RFC3709].  The changes
 are:
  • Combine RFCs 3709 and 6170 into one document, and encourage

implementers to support the "data" URI scheme (data:…) that was

    originally specified in RFC 6170.  Merging RFCs 3709 and 6170 led
    to many editorial changes throughout the document.
  • Drop SHA-1 as the mandatory-to-implement hash algorithm, and

encourage use of the one-way hash function that is employed by the

    certificate signature algorithm.
  • RFC 3709 required client applications to support both direct and

indirect addressing. This requirement is changed to SHOULD

    support both direct and indirect addressing to allow
    implementations to be more privacy preserving.
  • Update the reference for language tags to be RFC 5646 instead of

the now obsolete RFC 3066.

  • Update the reference for the URI Generic Syntax to be RFC 3986

instead of the now obsolete RFC 2396.

  • Update the reference for the application/pdf media type to be RFC

8118 instead of the now obsolete RFC 3778.

  • No longer require support for the FTP scheme (ftp://...) URI.
  • Require support for the HTTP scheme (http://...) URI and the HTTPS

scheme (https://...) URI.

  • Provide syntax of the "data" URI scheme using modern ABNF.
  • Require support for the compressed SVG image format with the

image/svg+xml+gzip media type.

  • Media types MUST follow the ABNF [RFC5234] that is provided in

Section 8.3.1 of [RFC9110]. This change resolves Errata ID 2679.

  • Remove the requirement that the LogotypeData file name have a file

extension of ".LTD". This change resolves Errata ID 2325.

  • Encourage, instead of requiring, each logotype to be represented

by at least one image.

  • Encourage the inclusion of text-based audio data suitable for

processing by a text-to-speech software using the media type of

    "text/plain;charset=UTF-8".
  • Encourage the use of dithering if an image needs to be scaled.
  • Require that the logotype certificate extension not contain more

than one certificate image logotype.

  • Privacy-related topics that were previously discussed in the

Security Considerations section are now covered in a separate

    Privacy Considerations section.  Additional topics are covered in
    both sections.
  • Provide ASN.1 modules for both the older syntax [OLD-ASN1] and the

most recent ASN.1 syntax [NEW-ASN1].

  • Provide additional references.
  • Provide additional examples.
  • Several editorial changes to improve clarity.
  • The example in Appendix B.1 was changed to use SHA-256 instead of

SHA-1.

Acknowledgments

  • Acknowledgments from RFC 3709
    This document is the result of contributions from many
    professionals.  The authors appreciate contributions from all
    members of the IETF PKIX Working Group.  We extend a special
    thanks to Al Arsenault, David Cross, Tim Polk, Russel Weiser,
    Terry Hayes, Alex Deacon, Andrew Hoag, Randy Sabett, Denis Pinkas,
    Magnus Nystrom, Ryan Hurst, and Phil Griffin for their efforts and
    support.
    Russ Housley thanks the management at RSA Laboratories, especially
    Burt Kaliski, who supported the development of this specification.
    The vast majority of the work on this specification was done while
    Russ was employed at RSA Laboratories.
  • Acknowledgments from RFC 6170
    The authors recognize valuable contributions from members of the
    PKIX working group, the CA Browser Forum, and James Manger, for
    their review and sample data.
  • Additional Acknowledgments
    Combining RFCs 3709 and 6170 has produced an improved
    specification.  The authors appreciate contributions from all
    members of the IETF LAMPS Working Group.  We extend a special
    thanks to Alexey Melnikov for his guidance on media types.  We
    extend a special thanks to Tim Geiser for his careful checking of
    the new examples in Appendices B.4 and B.5.  We extend a special
    thanks to Corey Bonnell, Daniel Kahn Gillmor, Roman Danyliw, Paul
    Wouters, Paul Kyzivat, Shuping Peng, Sheng Jiang, Rob Wilton, Éric
    Vyncke, Donald Eastlake 3rd, and Dan Harkins for their careful
    review and helpful comments.

Authors' Addresses

 Stefan Santesson
 IDsec Solutions AB
 Forskningsbyn Ideon
 SE-223 70 Lund
 Sweden
 Email: sts@aaa-sec.com
 Russ Housley
 Vigil Security, LLC
 516 Dranesville Road
 Herndon, VA 20170
 United States of America
 Email: housley@vigilsec.com
 Trevor Freeman
 Amazon Web Services
 1918 8th Ave
 Seattle, WA 98101
 United States of America
 Email: frtrevor@amazon.com
 Leonard Rosenthol
 Adobe
 345 Park Avenue
 San Jose, CA 95110
 United States of America
 Email: lrosenth@adobe.com
/home/gen.uk/domains/wiki.gen.uk/public_html/data/pages/rfc/rfc9399.txt · Last modified: 2023/05/05 22:49 by 127.0.0.1

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki